15 |
|
|
16 |
import operator |
import operator |
17 |
|
|
18 |
from color import Color |
from color import Color, Transparent |
19 |
from range import Range |
from range import Range |
20 |
from classification import Classification, ClassGroupSingleton, \ |
from classification import Classification, ClassGroupSingleton, \ |
21 |
ClassGroupRange, ClassGroupProperties |
ClassGroupRange, ClassGroupProperties |
22 |
|
|
23 |
def GenSingletonsFromList(_list, numGroups, ramp): |
def generate_singletons(_list, ramp): |
24 |
"""Generate a new classification consisting solely of singletons. |
"""Generate a new classification consisting solely of singletons. |
25 |
|
|
26 |
The resulting classification will consist of at most 'numGroups' |
The resulting classification will consist of one group for each |
27 |
groups whose group properties ramp between 'prop1' and 'prop2'. There |
item in _list whose properties ramp between 'prop1' and 'prop2'. |
|
could be fewer groups if '_list' contains fewer that 'numGroups' items. |
|
28 |
|
|
29 |
_list -- any object that implements the iterator interface |
_list -- any object that implements the iterator interface |
30 |
|
|
|
numGroups -- how many groups to generate. This can not be |
|
|
determined while the classification is being |
|
|
generated because the stepping values must |
|
|
be precalculated to ramp between prop1 and prop2. |
|
|
|
|
31 |
ramp -- an object which implements the CustomRamp interface |
ramp -- an object which implements the CustomRamp interface |
32 |
""" |
""" |
33 |
|
|
34 |
clazz = Classification() |
clazz = Classification() |
|
if numGroups == 0: return clazz |
|
|
|
|
|
ramp.SetNumGroups(numGroups) |
|
35 |
|
|
36 |
for value, prop in zip(_list, ramp): |
i = 0 |
37 |
|
maxValue = float(len(_list) - 1) |
38 |
|
for value in _list: |
39 |
|
prop = ramp.GetProperties(i / maxValue) |
40 |
clazz.AppendGroup(ClassGroupSingleton(value, prop)) |
clazz.AppendGroup(ClassGroupSingleton(value, prop)) |
41 |
|
i += 1 |
42 |
|
|
43 |
return clazz |
return clazz |
44 |
|
|
45 |
def GenSingletons(min, max, numGroups, ramp): |
def generate_uniform_distribution(min, max, numGroups, ramp, intStep = False): |
|
|
|
|
clazz = Classification() |
|
|
|
|
|
#step = int((max - min) / float(numGroups)) |
|
|
|
|
|
if numGroups > 0: |
|
|
|
|
|
step = int((max - min + 1) / float(numGroups)) |
|
|
cur_value = min |
|
|
|
|
|
ramp.SetNumGroups(numGroups) |
|
|
|
|
|
for prop in ramp: |
|
|
clazz.AppendGroup(ClassGroupSingleton(cur_value), prop) |
|
|
cur_value += step |
|
|
|
|
|
return clazz |
|
|
|
|
|
def GenUniformDistribution(min, max, numGroups, |
|
|
ramp, intStep = False): |
|
46 |
"""Generate a classification with numGroups range groups |
"""Generate a classification with numGroups range groups |
47 |
each with the same interval. |
each with the same interval. |
48 |
|
|
53 |
""" |
""" |
54 |
|
|
55 |
clazz = Classification() |
clazz = Classification() |
|
if numGroups == 0: return clazz |
|
|
|
|
|
ramp.SetNumGroups(numGroups) |
|
|
|
|
|
step = (max - min) / float(numGroups) |
|
|
|
|
|
if intStep: |
|
|
step = int(step) |
|
56 |
|
|
57 |
cur_min = min |
cur_min = min |
|
cur_max = cur_min + step |
|
58 |
|
|
|
i = 0 |
|
59 |
end = "[" |
end = "[" |
60 |
for prop in ramp: |
maxValue = float(numGroups - 1) |
61 |
|
for i in range(1, numGroups + 1): |
62 |
|
|
63 |
|
prop = ramp.GetProperties(float(i-1) / maxValue) |
64 |
|
|
65 |
|
if intStep: |
66 |
|
cur_max = min + int(round((i * (max - min + 1)) / maxValue)) |
67 |
|
else: |
68 |
|
cur_max = min + (i * (max - min)) / maxValue |
69 |
|
|
70 |
if i == (numGroups - 1): |
if i == numGroups: |
71 |
cur_max = max |
cur_max = max |
72 |
end = "]" |
end = "]" |
73 |
|
|
74 |
|
if cur_min == cur_max: |
75 |
|
_range = Range(("[", cur_min, cur_max, "]")) |
76 |
|
else: |
77 |
|
_range = Range(("[", cur_min, cur_max, end)) |
78 |
|
|
79 |
# this check guards against rounding issues |
clazz.AppendGroup(ClassGroupRange(_range, prop)) |
|
if cur_min != cur_max: |
|
|
range = Range(("[", cur_min, cur_max, end)) |
|
|
clazz.AppendGroup(ClassGroupRange(range, None, prop)) |
|
80 |
|
|
81 |
cur_min = cur_max |
cur_min = cur_max |
|
cur_max += step |
|
|
i += 1 |
|
82 |
|
|
83 |
return clazz |
return clazz |
84 |
|
|
85 |
|
def generate_quantiles(_list, percents, ramp, _range): |
|
def GenQuantiles(_list, percents, ramp, _range): |
|
86 |
"""Generates a Classification which has groups of ranges that |
"""Generates a Classification which has groups of ranges that |
87 |
represent quantiles of _list at the percentages given in percents. |
represent quantiles of _list at the percentages given in percents. |
88 |
Only the values that fall within _range are considered. |
Only the values that fall within _range are considered. |
94 |
_list -- a sort list of values |
_list -- a sort list of values |
95 |
|
|
96 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
percents -- a sorted list of floats in the range 0.0-1.0 which |
97 |
represent the upper bound of each quantile |
represent the upper bound of each quantile. the |
98 |
|
union of all percentiles should be the entire |
99 |
|
range from 0.0-1.0 |
100 |
|
|
101 |
ramp -- an object which implements the CustomRamp interface |
ramp -- an object which implements the CustomRamp interface |
102 |
|
|
103 |
_range -- a Range object |
_range -- a Range object |
104 |
|
|
105 |
|
Raises a Value Error if 'percents' has fewer than two items, or |
106 |
|
does not cover the entire range. |
107 |
""" |
""" |
108 |
|
|
109 |
clazz = Classification() |
clazz = Classification() |
110 |
quantiles = CalculateQuantiles(_list, percents, _range) |
quantiles = calculate_quantiles(_list, percents, _range) |
111 |
adjusted = True |
adjusted = True |
112 |
|
|
113 |
if quantiles is not None: |
if quantiles is not None: |
118 |
|
|
119 |
adjusted = quantiles[0] |
adjusted = quantiles[0] |
120 |
|
|
|
ramp.SetNumGroups(numGroups) |
|
|
|
|
121 |
start, min, endMax, right = _range.GetRange() |
start, min, endMax, right = _range.GetRange() |
122 |
|
|
123 |
oldp = 0 |
oldp = 0 |
124 |
i = 1 |
i = 1 |
125 |
end = "]" |
end = "]" |
126 |
|
|
127 |
for (q, p), prop in zip(quantiles[3], ramp): |
maxValue = float(numGroups - 1) |
128 |
|
for (q, p) in quantiles[3]: |
129 |
|
|
130 |
|
prop = ramp.GetProperties(float(i-1) / maxValue) |
131 |
|
|
132 |
if i == numGroups: |
if i == numGroups: |
133 |
max = endMax |
max = endMax |
134 |
end = right |
end = right |
135 |
else: |
else: |
136 |
max = _list[q] |
max = _list[q] |
137 |
|
|
138 |
group = ClassGroupRange(Range((start, min, max, end)), |
group = ClassGroupRange(Range((start, min, max, end)), prop) |
|
None, prop) |
|
139 |
|
|
140 |
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
141 |
round(p*100, 2))) |
round(p*100, 2))) |
147 |
|
|
148 |
return (adjusted, clazz) |
return (adjusted, clazz) |
149 |
|
|
150 |
def CalculateQuantiles(_list, percents, _range): |
def GenQuantiles0(_list, percents, ramp, _range): |
151 |
|
"""Same as GenQuantiles, but the first class won't be added to |
152 |
|
the classification. |
153 |
|
|
154 |
|
Returns a tuple (adjusted, Classification, upper_class0) where |
155 |
|
upper_class0 is the highest value inside the first class. |
156 |
|
|
157 |
|
_list -- a sort list of values |
158 |
|
|
159 |
|
percents -- a sorted list of floats in the range 0.0-1.0 which |
160 |
|
represent the upper bound of each quantile. the |
161 |
|
union of all percentiles should be the entire |
162 |
|
range from 0.0-1.0 |
163 |
|
|
164 |
|
ramp -- an object which implements the CustomRamp interface |
165 |
|
|
166 |
|
_range -- a Range object |
167 |
|
|
168 |
|
Raises a Value Error if 'percents' has fewer than two items, or |
169 |
|
does not cover the entire range. |
170 |
|
""" |
171 |
|
|
172 |
|
clazz = Classification() |
173 |
|
quantiles = calculate_quantiles(_list, percents, _range) |
174 |
|
adjusted = True |
175 |
|
|
176 |
|
if quantiles is not None: |
177 |
|
|
178 |
|
numGroups = len(quantiles[3]) - 1 |
179 |
|
|
180 |
|
if numGroups > 0: |
181 |
|
adjusted = quantiles[0] |
182 |
|
|
183 |
|
start, min, endMax, right = _range.GetRange() |
184 |
|
|
185 |
|
class0 = quantiles[3][0] |
186 |
|
min = _list[class0[0]] |
187 |
|
oldp = class0[1] |
188 |
|
i = 1 |
189 |
|
end = "]" |
190 |
|
|
191 |
|
maxValue = float(numGroups - 1) |
192 |
|
for (q, p) in quantiles[3][1:]: |
193 |
|
prop = ramp.GetProperties(float(i-1) / maxValue) |
194 |
|
|
195 |
|
if i == numGroups: |
196 |
|
max = endMax |
197 |
|
end = right |
198 |
|
else: |
199 |
|
max = _list[q] |
200 |
|
|
201 |
|
group = ClassGroupRange(Range((start, min, max, end)), prop) |
202 |
|
|
203 |
|
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
204 |
|
round(p*100, 2))) |
205 |
|
oldp = p |
206 |
|
start = "]" |
207 |
|
min = max |
208 |
|
clazz.AppendGroup(group) |
209 |
|
i += 1 |
210 |
|
|
211 |
|
return (adjusted, clazz, _list[class0[0]]) |
212 |
|
|
213 |
|
|
214 |
|
def calculate_quantiles(_list, percents, _range): |
215 |
"""Calculate quantiles for the given _list of percents from the |
"""Calculate quantiles for the given _list of percents from the |
216 |
sorted list of values that are in range. |
sorted list of values that are in range. |
217 |
|
|
233 |
_list -- a sort list of values |
_list -- a sort list of values |
234 |
|
|
235 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
percents -- a sorted list of floats in the range 0.0-1.0 which |
236 |
represent the upper bound of each quantile |
represent the upper bound of each quantile. the |
237 |
|
union of all percentiles should be the entire |
238 |
|
range from 0.0-1.0 |
239 |
|
|
240 |
_range -- a Range object |
_range -- a Range object |
241 |
|
|
242 |
|
Raises a Value Error if 'percents' has fewer than two items, or |
243 |
|
does not cover the entire range. |
244 |
""" |
""" |
245 |
|
|
246 |
quantiles = [] |
quantiles = [] |
247 |
adjusted = False |
adjusted = False |
248 |
|
|
249 |
if len(percents) != 0: |
if len(percents) <= 1: |
250 |
|
raise ValueError("percents parameter must have more than one item") |
251 |
|
|
252 |
|
if percents[-1] != 1.0: |
253 |
|
raise ValueError("percents does not cover the entire range") |
254 |
|
|
255 |
|
# |
256 |
|
# find what part of the _list range covers |
257 |
|
# |
258 |
|
minIndex = -1 |
259 |
|
maxIndex = -2 |
260 |
|
for i in xrange(0, len(_list), 1): |
261 |
|
if operator.contains(_range, _list[i]): |
262 |
|
minIndex = i |
263 |
|
break |
264 |
|
|
265 |
|
for i in xrange(len(_list)-1, -1, -1): |
266 |
|
if operator.contains(_range, _list[i]): |
267 |
|
maxIndex = i |
268 |
|
break |
269 |
|
|
270 |
|
numValues = maxIndex - minIndex + 1 |
271 |
|
|
272 |
|
if numValues > 0: |
273 |
|
|
274 |
# |
# |
275 |
# find what part of the _list range covers |
# build a list of unique indices into list of where each |
276 |
|
# quantile *should* be. set adjusted if the resulting |
277 |
|
# indices are different |
278 |
# |
# |
279 |
minIndex = -1 |
quantiles = {} |
280 |
maxIndex = -2 |
for p in percents: |
281 |
for i in xrange(0, len(_list), 1): |
index = min(minIndex + int(p*numValues)-1, maxIndex) |
282 |
if operator.contains(_range, _list[i]): |
|
283 |
minIndex = i |
adjusted = adjusted \ |
284 |
break |
or quantiles.has_key(index) \ |
285 |
|
or ((index - minIndex + 1) / float(numValues)) != p |
286 |
|
|
287 |
for i in xrange(len(_list)-1, -1, -1): |
quantiles[index] = 0 |
|
if operator.contains(_range, _list[i]): |
|
|
maxIndex = i |
|
|
break |
|
288 |
|
|
289 |
numValues = maxIndex - minIndex + 1 |
quantiles = quantiles.keys() |
290 |
|
quantiles.sort() |
291 |
|
|
292 |
if numValues > 0: |
# |
293 |
|
# the current quantile index must be strictly greater than |
294 |
|
# the lowerBound |
295 |
|
# |
296 |
|
lowerBound = minIndex - 1 |
297 |
|
|
298 |
|
for qindex in xrange(len(quantiles)): |
299 |
|
if lowerBound >= maxIndex: |
300 |
|
# discard higher quantiles |
301 |
|
quantiles = quantiles[:qindex] |
302 |
|
break |
303 |
|
|
304 |
|
# lowerBound + 1 is always a valid index |
305 |
|
|
306 |
# |
# |
307 |
# build a list of unique indices into list of where each |
# bump up the current quantile index to be a usable index |
308 |
# quantile *should* be. set adjusted if the resulting |
# if it currently falls below the lowerBound |
|
# indices are different |
|
309 |
# |
# |
310 |
quantiles = {} |
if quantiles[qindex] <= lowerBound: |
311 |
for p in percents: |
quantiles[qindex] = lowerBound + 1 |
|
index = min(minIndex + int(p*numValues)-1, maxIndex) |
|
|
|
|
|
adjusted = adjusted \ |
|
|
or quantiles.has_key(index) \ |
|
|
or ((index - minIndex + 1) / float(numValues)) != p |
|
|
|
|
|
quantiles[index] = 0 |
|
312 |
|
|
313 |
quantiles = quantiles.keys() |
listIndex = quantiles[qindex] |
314 |
quantiles.sort() |
value = _list[listIndex] |
315 |
|
|
316 |
# |
# |
317 |
# the current quantile index must be strictly greater than |
# look for similar values around the quantile index |
|
# the lowerBound |
|
318 |
# |
# |
319 |
lowerBound = minIndex - 1 |
lindex = listIndex - 1 |
320 |
|
while lindex > lowerBound and value == _list[lindex]: |
321 |
for qindex in xrange(len(quantiles)): |
lindex -= 1 |
322 |
if lowerBound >= maxIndex: |
lcount = (listIndex - 1) - lindex |
323 |
# discard higher quantiles |
|
324 |
quantiles = quantiles[:qindex] |
rindex = listIndex + 1 |
325 |
break |
while rindex < maxIndex + 1 and value == _list[rindex]: |
326 |
|
rindex += 1 |
327 |
# lowerBound + 1 is always a valid index |
rcount = (listIndex + 1) - rindex |
|
|
|
|
# |
|
|
# bump up the current quantile index to be a usable index |
|
|
# if it currently falls below the lowerBound |
|
|
# |
|
|
if quantiles[qindex] <= lowerBound: |
|
|
quantiles[qindex] = lowerBound + 1 |
|
|
|
|
|
listIndex = quantiles[qindex] |
|
|
value = _list[listIndex] |
|
328 |
|
|
329 |
# |
# |
330 |
# look for similar values around the quantile index |
# adjust the current quantile index based on how many |
331 |
# |
# numbers in the _list are the same as the current value |
332 |
lindex = listIndex - 1 |
# |
333 |
while lindex > lowerBound and value == _list[lindex]: |
newIndex = listIndex |
334 |
lindex -= 1 |
if lcount == rcount: |
335 |
lcount = (listIndex - 1) - lindex |
if lcount != 0: |
336 |
|
# |
337 |
rindex = listIndex + 1 |
# there are an equal number of numbers to the left |
338 |
while rindex < maxIndex + 1 and value == _list[rindex]: |
# and right, try going to the left first unless |
|
rindex += 1 |
|
|
rcount = (listIndex + 1) - rindex |
|
|
|
|
|
# |
|
|
# adjust the current quantile index based on how many |
|
|
# numbers in the _list are the same as the current value |
|
|
# |
|
|
newIndex = listIndex |
|
|
if lcount == rcount: |
|
|
if lcount != 0: |
|
|
# |
|
|
# there are an equal number of numbers to the left |
|
|
# and right, try going to the left first unless |
|
|
# doing so creates an empty quantile. |
|
|
# |
|
|
if lindex != lowerBound: |
|
|
newIndex = lindex |
|
|
else: |
|
|
newIndex = rindex - 1 |
|
|
|
|
|
elif lcount < rcount: |
|
|
# there are fewer items to the left, so |
|
|
# try going to the left first unless |
|
339 |
# doing so creates an empty quantile. |
# doing so creates an empty quantile. |
340 |
|
# |
341 |
if lindex != lowerBound: |
if lindex != lowerBound: |
342 |
newIndex = lindex |
newIndex = lindex |
343 |
else: |
else: |
344 |
newIndex = rindex - 1 |
newIndex = rindex - 1 |
345 |
|
|
346 |
elif rcount < lcount: |
elif lcount < rcount: |
347 |
# there are fewer items to the right, so go to the right |
# there are fewer items to the left, so |
348 |
|
# try going to the left first unless |
349 |
|
# doing so creates an empty quantile. |
350 |
|
if lindex != lowerBound: |
351 |
|
newIndex = lindex |
352 |
|
else: |
353 |
newIndex = rindex - 1 |
newIndex = rindex - 1 |
354 |
|
|
355 |
adjusted = adjusted or newIndex != listIndex |
elif rcount < lcount: |
356 |
|
# there are fewer items to the right, so go to the right |
357 |
|
newIndex = rindex - 1 |
358 |
|
|
359 |
|
adjusted = adjusted or newIndex != listIndex |
360 |
|
|
361 |
quantiles[qindex] = newIndex |
quantiles[qindex] = newIndex |
362 |
lowerBound = quantiles[qindex] |
lowerBound = quantiles[qindex] |
363 |
|
|
364 |
if len(quantiles) == 0: |
if len(quantiles) == 0: |
365 |
return None |
return None |
368 |
[(q, (q - minIndex+1) / float(numValues)) \ |
[(q, (q - minIndex+1) / float(numValues)) \ |
369 |
for q in quantiles]) |
for q in quantiles]) |
370 |
|
|
|
CLR = 0 |
|
|
STEP = 1 |
|
371 |
class CustomRamp: |
class CustomRamp: |
372 |
|
|
373 |
def __init__(self, prop1, prop2): |
def __init__(self, prop1, prop2): |
374 |
self.prop1 = prop1 |
self.prop1 = prop1 |
375 |
self.prop2 = prop2 |
self.prop2 = prop2 |
376 |
|
|
|
self.count = 0 |
|
|
|
|
|
def __iter__(self): |
|
|
return self |
|
|
|
|
377 |
def GetRamp(self): |
def GetRamp(self): |
378 |
return self |
return self |
379 |
|
|
380 |
def SetNumGroups(self, num): |
def GetProperties(self, index): |
381 |
|
"""Return a ClassGroupProperties object whose properties |
382 |
if num <= 0: |
represent a point at 'index' between prop1 and prop2 in |
383 |
return False |
the constructor. |
384 |
|
|
385 |
self.count = int(num) |
index -- a value such that 0 <= index <= 1 |
386 |
num = float(num) |
""" |
387 |
|
|
388 |
prop1 = self.prop1 |
if not (0 <= index <= 1): |
389 |
prop2 = self.prop2 |
raise ValueError(_("invalid index")) |
390 |
|
|
391 |
clr = prop1.GetLineColor() |
newProps = ClassGroupProperties() |
392 |
lineColor2 = prop2.GetLineColor() |
|
393 |
|
color1 = self.prop1.GetLineColor() |
394 |
self.noLine = clr is not Color.Transparent \ |
color2 = self.prop2.GetLineColor() |
395 |
and lineColor2 is not Color.Transparent |
|
396 |
|
self.__SetProperty(color1, color2, index, newProps.SetLineColor) |
397 |
|
self.__SetProperty(color1, color2, index, newProps.SetFill) |
398 |
self.lineInfo = self.__GetColorInfo(prop1.GetLineColor(), |
|
399 |
prop2.GetLineColor(), |
w = (self.prop2.GetLineWidth() - self.prop1.GetLineWidth()) \ |
400 |
num) |
* index \ |
401 |
|
+ self.prop1.GetLineWidth() |
402 |
self.fillInfo = self.__GetColorInfo(prop1.GetFill(), |
|
403 |
prop2.GetFill(), |
newProps.SetLineWidth(int(round(w))) |
404 |
num) |
|
405 |
|
return newProps |
406 |
self.lineWidth = prop1.GetLineWidth() |
|
407 |
self.lineWidthStep = (prop2.GetLineWidth() - self.lineWidth) / num |
def __SetProperty(self, color1, color2, index, setf): |
408 |
|
|
409 |
return True |
if color1 is Transparent and color2 is Transparent: |
410 |
|
setf(Transparent) |
411 |
def next(self): |
elif color1 is Transparent: |
412 |
if self.count == 0: |
setf(Color( |
413 |
raise StopIteration |
color2.red * index, |
414 |
|
color2.green * index, |
415 |
prop = ClassGroupProperties() |
color2.blue * index)) |
416 |
|
elif color2 is Transparent: |
417 |
if self.lineInfo is None: |
setf(Color( |
418 |
prop.SetLineColor(Color.Transparent) |
color1.red * index, |
419 |
else: |
color1.green * index, |
420 |
prop.SetLineColor(Color(self.lineInfo[CLR][0] / 255, |
color1.blue * index)) |
|
self.lineInfo[CLR][1] / 255, |
|
|
self.lineInfo[CLR][2] / 255)) |
|
|
|
|
|
self.lineInfo[CLR][0] += self.lineInfo[STEP][0] |
|
|
self.lineInfo[CLR][1] += self.lineInfo[STEP][1] |
|
|
self.lineInfo[CLR][2] += self.lineInfo[STEP][2] |
|
|
|
|
|
if self.fillInfo is None: |
|
|
prop.SetFill(Color.Transparent) |
|
421 |
else: |
else: |
422 |
prop.SetFill(Color(self.fillInfo[CLR][0] / 255, |
setf(Color( |
423 |
self.fillInfo[CLR][1] / 255, |
(color2.red - color1.red) * index + color1.red, |
424 |
self.fillInfo[CLR][2] / 255)) |
(color2.green - color1.green) * index + color1.green, |
425 |
|
(color2.blue - color1.blue) * index + color1.blue)) |
|
self.fillInfo[CLR][0] += self.fillInfo[STEP][0] |
|
|
self.fillInfo[CLR][1] += self.fillInfo[STEP][1] |
|
|
self.fillInfo[CLR][2] += self.fillInfo[STEP][2] |
|
|
|
|
|
|
|
|
prop.SetLineWidth(int(self.lineWidth)) |
|
|
self.lineWidth += self.lineWidthStep |
|
|
|
|
|
self.count -= 1 |
|
|
|
|
|
return prop |
|
|
|
|
|
def __GetColorInfo(self, color1, color2, numGroups): |
|
|
|
|
|
if color1 is Color.Transparent and color2 is Color.Transparent: |
|
|
# |
|
|
# returning early |
|
|
# |
|
|
return None |
|
|
elif color1 is not Color.Transparent and color2 is Color.Transparent: |
|
|
color = [color1.red * 255, |
|
|
color1.green * 255, |
|
|
color1.blue * 255] |
|
|
step = (0, 0, 0) |
|
|
elif color1 is Color.Transparent and color2 is not Color.Transparent: |
|
|
color = [color2.red * 255, |
|
|
color2.green * 255, |
|
|
color2.blue * 255] |
|
|
step = (0, 0, 0) |
|
|
else: |
|
|
color = [color1.red * 255, |
|
|
color1.green * 255, |
|
|
color1.blue * 255] |
|
|
step = ((color2.red * 255 - color1.red * 255) / numGroups, |
|
|
(color2.green * 255 - color1.green * 255) / numGroups, |
|
|
(color2.blue * 255 - color1.blue * 255) / numGroups) |
|
|
|
|
|
|
|
|
return (color, step) |
|
426 |
|
|
427 |
class MonochromaticRamp(CustomRamp): |
class MonochromaticRamp(CustomRamp): |
428 |
def __init__(self, start, end): |
def __init__(self, start, end): |
436 |
|
|
437 |
CustomRamp.__init__(self, sp, ep) |
CustomRamp.__init__(self, sp, ep) |
438 |
|
|
439 |
class GreyRamp(MonochromaticRamp): |
GreyRamp = MonochromaticRamp(Color(1, 1, 1), Color(0, 0, 0)) |
440 |
def __init__(self): |
RedRamp = MonochromaticRamp(Color(1, 1, 1), Color(.8, 0, 0)) |
441 |
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, 0, 0)) |
GreenRamp = MonochromaticRamp(Color(1, 1, 1), Color(0, .8, 0)) |
442 |
|
BlueRamp = MonochromaticRamp(Color(1, 1, 1), Color(0, 0, .8)) |
443 |
class RedRamp(MonochromaticRamp): |
GreenToRedRamp = MonochromaticRamp(Color(1, .8, 1), Color(1, 0, 0)) |
|
def __init__(self): |
|
|
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(.8, 0, 0)) |
|
|
|
|
|
class GreenRamp(MonochromaticRamp): |
|
|
def __init__(self): |
|
|
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, .8, 0)) |
|
|
|
|
|
class BlueRamp(MonochromaticRamp): |
|
|
def __init__(self): |
|
|
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, 0, .8)) |
|
|
|
|
|
class GreenToRedRamp(MonochromaticRamp): |
|
|
def __init__(self): |
|
|
MonochromaticRamp.__init__(self, Color(0, .8, 0), Color(1, 0, 0)) |
|
444 |
|
|
445 |
class HotToColdRamp: |
class HotToColdRamp: |
446 |
|
|
|
def __iter__(self): |
|
|
return self |
|
|
|
|
447 |
def GetRamp(self): |
def GetRamp(self): |
448 |
return self |
return self |
449 |
|
|
450 |
def SetNumGroups(self, num): |
def GetProperties(self, index): |
451 |
if num < 0: |
"""Return a ClassGroupProperties object whose properties |
452 |
return False |
represent a point at 'index' between "hot" and "cold". |
453 |
|
|
454 |
self.num = float(num) |
index -- a value such that 0 <= index <= 1 |
455 |
self.index = 0 |
""" |
|
|
|
|
return True |
|
|
|
|
|
def next(self): |
|
|
if self.index == self.num: |
|
|
raise StopIteration |
|
456 |
|
|
457 |
clr = [1.0, 1.0, 1.0] |
clr = [1.0, 1.0, 1.0] |
458 |
|
|
459 |
if self.index < (.25 * self.num): |
if index < .25: |
460 |
clr[0] = 0 |
clr[0] = 0 |
461 |
clr[1] = 4 * self.index / self.num |
clr[1] = 4 * index |
462 |
elif self.index < (.5 * self.num): |
elif index < .5: |
463 |
clr[0] = 0 |
clr[0] = 0 |
464 |
clr[2] = 1 + 4 * (.25 * self.num - self.index) / self.num |
clr[2] = 1 + 4 * (.25 - index) |
465 |
elif self.index < (.75 * self.num): |
elif index < .75: |
466 |
clr[0] = 4 * (self.index - .5 * self.num) / self.num |
clr[0] = 4 * (index - .5) |
467 |
clr[2] = 0 |
clr[2] = 0 |
468 |
else: |
else: |
469 |
clr[1] = 1 + 4 * (.75 * self.num - self.index) / self.num |
clr[1] = 1 + 4 * (.75 - index) |
470 |
clr[2] = 0 |
clr[2] = 0 |
471 |
|
|
|
self.index += 1 |
|
|
|
|
472 |
prop = ClassGroupProperties() |
prop = ClassGroupProperties() |
473 |
prop.SetLineColor(Color(clr[0], clr[1], clr[2])) |
prop.SetLineColor(Color(clr[0], clr[1], clr[2])) |
474 |
prop.SetFill(Color(clr[0], clr[1], clr[2])) |
prop.SetFill(Color(clr[0], clr[1], clr[2])) |
475 |
|
|
476 |
return prop |
return prop |
477 |
|
|
|
#class Colors16Ramp: |
|
|
# |
|
|
#def __iter__(self): |
|
|
#return self |
|
|
# |
|
|
#def GetRamp(self): |
|
|
#return self |
|
|
# |
|
|
#def SetNumGroups(self, num): |
|
|
#if num < 0: |
|
|
#return False |
|
|
# |
|
|
#self.index = 0 |
|
|
# |
|
|
#return True |
|