6 |
# Read the file COPYING coming with Thuban for details. |
# Read the file COPYING coming with Thuban for details. |
7 |
|
|
8 |
""" |
""" |
9 |
ClassGenerator |
Functions to generate Classifications |
10 |
""" |
""" |
11 |
|
|
12 |
__version__ = "$Revision$" |
__version__ = "$Revision$" |
20 |
from classification import Classification, ClassGroupSingleton, \ |
from classification import Classification, ClassGroupSingleton, \ |
21 |
ClassGroupRange, ClassGroupProperties |
ClassGroupRange, ClassGroupProperties |
22 |
|
|
23 |
class ClassGenerator: |
def GenSingletonsFromList(_list, numGroups, ramp): |
24 |
|
"""Generate a new classification consisting solely of singletons. |
25 |
|
|
26 |
def GenSingletonsFromList(self, _list, numGroups, ramp): |
The resulting classification will consist of at most 'numGroups' |
27 |
"""Generate a new classification consisting solely of singletons. |
groups whose group properties ramp between 'prop1' and 'prop2'. There |
28 |
|
could be fewer groups if '_list' contains fewer that 'numGroups' items. |
29 |
|
|
30 |
The resulting classification will consist of at most 'numGroups' |
_list -- any object that implements the iterator interface |
|
groups whose group properties ramp between 'prop1' and 'prop2'. There |
|
|
could be fewer groups if '_list' contains fewer that 'numGroups' items. |
|
31 |
|
|
32 |
_list -- any object that implements the iterator interface |
numGroups -- how many groups to generate. This can not be |
33 |
|
determined while the classification is being |
34 |
|
generated because the stepping values must |
35 |
|
be precalculated to ramp between prop1 and prop2. |
36 |
|
|
37 |
numGroups -- how many groups to generate. This can not be |
ramp -- an object which implements the CustomRamp interface |
38 |
determined while the classification is being |
""" |
|
generated because the stepping values must |
|
|
be precalculated to ramp between prop1 and prop2. |
|
39 |
|
|
40 |
ramp -- an object which implements the CustomRamp interface |
clazz = Classification() |
41 |
""" |
if numGroups == 0: return clazz |
42 |
|
|
43 |
clazz = Classification() |
ramp.SetNumGroups(numGroups) |
|
if numGroups == 0: return clazz |
|
44 |
|
|
45 |
ramp.SetNumGroups(numGroups) |
for value, prop in zip(_list, ramp): |
46 |
|
clazz.AppendGroup(ClassGroupSingleton(value, prop)) |
47 |
|
|
48 |
for value, prop in zip(_list, ramp): |
return clazz |
|
clazz.AppendGroup(ClassGroupSingleton(value, prop)) |
|
49 |
|
|
50 |
return clazz |
def GenSingletons(min, max, numGroups, ramp): |
51 |
|
|
52 |
def GenSingletons(self, min, max, numGroups, ramp): |
clazz = Classification() |
53 |
|
|
54 |
clazz = Classification() |
#step = int((max - min) / float(numGroups)) |
55 |
|
|
56 |
#step = int((max - min) / float(numGroups)) |
if numGroups > 0: |
57 |
|
|
58 |
if numGroups > 0: |
step = int((max - min + 1) / float(numGroups)) |
59 |
|
cur_value = min |
60 |
|
|
61 |
step = int((max - min + 1) / float(numGroups)) |
ramp.SetNumGroups(numGroups) |
|
cur_value = min |
|
62 |
|
|
63 |
ramp.SetNumGroups(numGroups) |
for prop in ramp: |
64 |
|
clazz.AppendGroup(ClassGroupSingleton(cur_value), prop) |
65 |
|
cur_value += step |
66 |
|
|
67 |
for prop in ramp: |
return clazz |
|
clazz.AppendGroup(ClassGroupSingleton(cur_value), prop) |
|
|
cur_value += step |
|
|
|
|
|
return clazz |
|
|
|
|
|
def GenUniformDistribution(self, min, max, numGroups, |
|
|
ramp, intStep = False): |
|
|
"""Generate a classification with numGroups range groups |
|
|
each with the same interval. |
|
|
|
|
|
intStep -- force the calculated stepping to an integer. |
|
|
Useful if the values are integers but the |
|
|
number of groups specified doesn't evenly |
|
|
divide (max - min). |
|
|
""" |
|
68 |
|
|
69 |
clazz = Classification() |
def GenUniformDistribution(min, max, numGroups, |
70 |
if numGroups == 0: return clazz |
ramp, intStep = False): |
71 |
|
"""Generate a classification with numGroups range groups |
72 |
|
each with the same interval. |
73 |
|
|
74 |
ramp.SetNumGroups(numGroups) |
intStep -- force the calculated stepping to an integer. |
75 |
|
Useful if the values are integers but the |
76 |
|
number of groups specified doesn't evenly |
77 |
|
divide (max - min). |
78 |
|
""" |
79 |
|
|
80 |
step = (max - min) / float(numGroups) |
clazz = Classification() |
81 |
|
if numGroups == 0: return clazz |
82 |
|
|
83 |
if intStep: |
ramp.SetNumGroups(numGroups) |
|
step = int(step) |
|
84 |
|
|
85 |
cur_min = min |
step = (max - min) / float(numGroups) |
|
cur_max = cur_min + step |
|
86 |
|
|
87 |
i = 0 |
if intStep: |
88 |
end = "[" |
step = int(step) |
|
for prop in ramp: |
|
89 |
|
|
90 |
if i == (numGroups - 1): |
cur_min = min |
91 |
cur_max = max |
cur_max = cur_min + step |
|
end = "]" |
|
92 |
|
|
93 |
|
i = 0 |
94 |
|
end = "[" |
95 |
|
for prop in ramp: |
96 |
|
|
97 |
# this check guards against rounding issues |
if i == (numGroups - 1): |
98 |
if cur_min != cur_max: |
cur_max = max |
99 |
range = Range(("[", cur_min, cur_max, end)) |
end = "]" |
|
clazz.AppendGroup(ClassGroupRange(range, None, prop)) |
|
100 |
|
|
|
cur_min = cur_max |
|
|
cur_max += step |
|
|
i += 1 |
|
101 |
|
|
102 |
return clazz |
# this check guards against rounding issues |
103 |
|
if cur_min != cur_max: |
104 |
|
range = Range(("[", cur_min, cur_max, end)) |
105 |
|
clazz.AppendGroup(ClassGroupRange(range, None, prop)) |
106 |
|
|
107 |
|
cur_min = cur_max |
108 |
|
cur_max += step |
109 |
|
i += 1 |
110 |
|
|
111 |
def GenQuantiles(self, _list, percents, ramp, _range): |
return clazz |
|
"""Generates a Classification which has groups of ranges that |
|
|
represent quantiles of _list at the percentages given in percents. |
|
|
Only the values that fall within _range are considered. |
|
112 |
|
|
|
Returns a tuple (adjusted, Classification) where adjusted is |
|
|
True if the Classification does not exactly represent the given |
|
|
range, or if the Classification is empty. |
|
113 |
|
|
114 |
_list -- a sort list of values |
def GenQuantiles(_list, percents, ramp, _range): |
115 |
|
"""Generates a Classification which has groups of ranges that |
116 |
|
represent quantiles of _list at the percentages given in percents. |
117 |
|
Only the values that fall within _range are considered. |
118 |
|
|
119 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
Returns a tuple (adjusted, Classification) where adjusted is |
120 |
represent the upper bound of each quantile |
True if the Classification does not exactly represent the given |
121 |
|
range, or if the Classification is empty. |
122 |
|
|
123 |
ramp -- an object which implements the CustomRamp interface |
_list -- a sort list of values |
124 |
|
|
125 |
_range -- a Range object |
percents -- a sorted list of floats in the range 0.0-1.0 which |
126 |
""" |
represent the upper bound of each quantile |
127 |
|
|
128 |
clazz = Classification() |
ramp -- an object which implements the CustomRamp interface |
|
quantiles = self.CalculateQuantiles(_list, percents, _range) |
|
|
adjusted = True |
|
129 |
|
|
130 |
if quantiles is not None: |
_range -- a Range object |
131 |
|
""" |
132 |
|
|
133 |
numGroups = len(quantiles[3]) |
clazz = Classification() |
134 |
|
quantiles = CalculateQuantiles(_list, percents, _range) |
135 |
|
adjusted = True |
136 |
|
|
137 |
if numGroups != 0: |
if quantiles is not None: |
138 |
|
|
139 |
adjusted = quantiles[0] |
numGroups = len(quantiles[3]) |
140 |
|
|
141 |
ramp.SetNumGroups(numGroups) |
if numGroups != 0: |
142 |
|
|
143 |
start, min, endMax, right = _range.GetRange() |
adjusted = quantiles[0] |
144 |
|
|
145 |
oldp = 0 |
ramp.SetNumGroups(numGroups) |
|
i = 1 |
|
|
end = "]" |
|
146 |
|
|
147 |
for (q, p), prop in zip(quantiles[3], ramp): |
start, min, endMax, right = _range.GetRange() |
|
if i == numGroups: |
|
|
max = endMax |
|
|
end = right |
|
|
else: |
|
|
max = _list[q] |
|
148 |
|
|
149 |
group = ClassGroupRange(Range((start, min, max, end)), |
oldp = 0 |
150 |
None, prop) |
i = 1 |
151 |
|
end = "]" |
152 |
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
|
153 |
round(p*100, 2))) |
for (q, p), prop in zip(quantiles[3], ramp): |
154 |
oldp = p |
if i == numGroups: |
155 |
start = "]" |
max = endMax |
156 |
min = max |
end = right |
157 |
clazz.AppendGroup(group) |
else: |
158 |
i += 1 |
max = _list[q] |
159 |
|
|
160 |
return (adjusted, clazz) |
group = ClassGroupRange(Range((start, min, max, end)), |
161 |
|
None, prop) |
162 |
def CalculateQuantiles(self, _list, percents, _range): |
|
163 |
"""Calculate quantiles for the given _list of percents from the |
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
164 |
sorted list of values that are in range. |
round(p*100, 2))) |
165 |
|
oldp = p |
166 |
This may not actually generate len(percents) quantiles if |
start = "]" |
167 |
many of the values that fall on quantile borders are the same. |
min = max |
168 |
|
clazz.AppendGroup(group) |
169 |
Returns a tuple of the form: |
i += 1 |
170 |
(adjusted, minIndex, maxIndex, [quantile_list]) |
|
171 |
|
return (adjusted, clazz) |
172 |
where adjusted is True if the the quantile percentages differ from |
|
173 |
those supplied, minIndex is the index into _list where the |
def CalculateQuantiles(_list, percents, _range): |
174 |
minimum value used is located, maxIndex is the index into _list |
"""Calculate quantiles for the given _list of percents from the |
175 |
where the maximum value used is located, and quantile_list is a |
sorted list of values that are in range. |
176 |
list of tuples of the form: (list_index, quantile_percentage) |
|
177 |
|
This may not actually generate len(percents) quantiles if |
178 |
Returns None, if no quantiles could be generated based on the |
many of the values that fall on quantile borders are the same. |
179 |
given range or input list. |
|
180 |
|
Returns a tuple of the form: |
181 |
|
(adjusted, minIndex, maxIndex, [quantile_list]) |
182 |
|
|
183 |
|
where adjusted is True if the the quantile percentages differ from |
184 |
|
those supplied, minIndex is the index into _list where the |
185 |
|
minimum value used is located, maxIndex is the index into _list |
186 |
|
where the maximum value used is located, and quantile_list is a |
187 |
|
list of tuples of the form: (list_index, quantile_percentage) |
188 |
|
|
189 |
|
Returns None, if no quantiles could be generated based on the |
190 |
|
given range or input list. |
191 |
|
|
192 |
|
_list -- a sort list of values |
193 |
|
|
194 |
|
percents -- a sorted list of floats in the range 0.0-1.0 which |
195 |
|
represent the upper bound of each quantile |
196 |
|
|
197 |
_list -- a sort list of values |
_range -- a Range object |
198 |
|
""" |
199 |
|
|
200 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
quantiles = [] |
201 |
represent the upper bound of each quantile |
adjusted = False |
202 |
|
|
203 |
_range -- a Range object |
if len(percents) != 0: |
204 |
""" |
|
205 |
|
# |
206 |
quantiles = [] |
# find what part of the _list range covers |
207 |
adjusted = False |
# |
208 |
|
minIndex = -1 |
209 |
|
maxIndex = -2 |
210 |
|
for i in xrange(0, len(_list), 1): |
211 |
|
if operator.contains(_range, _list[i]): |
212 |
|
minIndex = i |
213 |
|
break |
214 |
|
|
215 |
|
for i in xrange(len(_list)-1, -1, -1): |
216 |
|
if operator.contains(_range, _list[i]): |
217 |
|
maxIndex = i |
218 |
|
break |
219 |
|
|
220 |
|
numValues = maxIndex - minIndex + 1 |
221 |
|
|
222 |
|
if numValues > 0: |
223 |
|
|
|
if len(percents) != 0: |
|
|
|
|
224 |
# |
# |
225 |
# find what part of the _list range covers |
# build a list of unique indices into list of where each |
226 |
|
# quantile *should* be. set adjusted if the resulting |
227 |
|
# indices are different |
228 |
# |
# |
229 |
minIndex = -1 |
quantiles = {} |
230 |
maxIndex = -2 |
for p in percents: |
231 |
for i in xrange(0, len(_list), 1): |
index = min(minIndex + int(p*numValues)-1, maxIndex) |
232 |
if operator.contains(_range, _list[i]): |
|
233 |
minIndex = i |
adjusted = adjusted \ |
234 |
break |
or quantiles.has_key(index) \ |
235 |
|
or ((index - minIndex + 1) / float(numValues)) != p |
236 |
|
|
237 |
for i in xrange(len(_list)-1, -1, -1): |
quantiles[index] = 0 |
238 |
if operator.contains(_range, _list[i]): |
|
239 |
maxIndex = i |
quantiles = quantiles.keys() |
240 |
break |
quantiles.sort() |
241 |
|
|
242 |
|
# |
243 |
|
# the current quantile index must be strictly greater than |
244 |
|
# the lowerBound |
245 |
|
# |
246 |
|
lowerBound = minIndex - 1 |
247 |
|
|
248 |
numValues = maxIndex - minIndex + 1 |
for qindex in xrange(len(quantiles)): |
249 |
|
if lowerBound >= maxIndex: |
250 |
|
# discard higher quantiles |
251 |
|
quantiles = quantiles[:qindex] |
252 |
|
break |
253 |
|
|
254 |
if numValues > 0: |
# lowerBound + 1 is always a valid index |
255 |
|
|
256 |
# |
# |
257 |
# build a list of unique indices into list of where each |
# bump up the current quantile index to be a usable index |
258 |
# quantile *should* be. set adjusted if the resulting |
# if it currently falls below the lowerBound |
|
# indices are different |
|
259 |
# |
# |
260 |
quantiles = {} |
if quantiles[qindex] <= lowerBound: |
261 |
for p in percents: |
quantiles[qindex] = lowerBound + 1 |
262 |
index = min(minIndex + int(p*numValues)-1, maxIndex) |
|
263 |
|
listIndex = quantiles[qindex] |
264 |
adjusted = adjusted \ |
value = _list[listIndex] |
|
or quantiles.has_key(index) \ |
|
|
or ((index - minIndex + 1) / float(numValues)) != p |
|
|
|
|
|
quantiles[index] = 0 |
|
265 |
|
|
266 |
quantiles = quantiles.keys() |
# |
267 |
quantiles.sort() |
# look for similar values around the quantile index |
268 |
|
# |
269 |
|
lindex = listIndex - 1 |
270 |
|
while lindex > lowerBound and value == _list[lindex]: |
271 |
|
lindex -= 1 |
272 |
|
lcount = (listIndex - 1) - lindex |
273 |
|
|
274 |
|
rindex = listIndex + 1 |
275 |
|
while rindex < maxIndex + 1 and value == _list[rindex]: |
276 |
|
rindex += 1 |
277 |
|
rcount = (listIndex + 1) - rindex |
278 |
|
|
279 |
# |
# |
280 |
# the current quantile index must be strictly greater than |
# adjust the current quantile index based on how many |
281 |
# the lowerBound |
# numbers in the _list are the same as the current value |
282 |
# |
# |
283 |
lowerBound = minIndex - 1 |
newIndex = listIndex |
284 |
|
if lcount == rcount: |
285 |
for qindex in xrange(len(quantiles)): |
if lcount != 0: |
286 |
if lowerBound >= maxIndex: |
# |
287 |
# discard higher quantiles |
# there are an equal number of numbers to the left |
288 |
quantiles = quantiles[:qindex] |
# and right, try going to the left first unless |
|
break |
|
|
|
|
|
# lowerBound + 1 is always a valid index |
|
|
|
|
|
# |
|
|
# bump up the current quantile index to be a usable index |
|
|
# if it currently falls below the lowerBound |
|
|
# |
|
|
if quantiles[qindex] <= lowerBound: |
|
|
quantiles[qindex] = lowerBound + 1 |
|
|
|
|
|
listIndex = quantiles[qindex] |
|
|
value = _list[listIndex] |
|
|
|
|
|
# |
|
|
# look for similar values around the quantile index |
|
|
# |
|
|
lindex = listIndex - 1 |
|
|
while lindex > lowerBound and value == _list[lindex]: |
|
|
lindex -= 1 |
|
|
lcount = (listIndex - 1) - lindex |
|
|
|
|
|
rindex = listIndex + 1 |
|
|
while rindex < maxIndex + 1 and value == _list[rindex]: |
|
|
rindex += 1 |
|
|
rcount = (listIndex + 1) - rindex |
|
|
|
|
|
# |
|
|
# adjust the current quantile index based on how many |
|
|
# numbers in the _list are the same as the current value |
|
|
# |
|
|
newIndex = listIndex |
|
|
if lcount == rcount: |
|
|
if lcount != 0: |
|
|
# |
|
|
# there are an equal number of numbers to the left |
|
|
# and right, try going to the left first unless |
|
|
# doing so creates an empty quantile. |
|
|
# |
|
|
if lindex != lowerBound: |
|
|
newIndex = lindex |
|
|
else: |
|
|
newIndex = rindex - 1 |
|
|
|
|
|
elif lcount < rcount: |
|
|
# there are fewer items to the left, so |
|
|
# try going to the left first unless |
|
289 |
# doing so creates an empty quantile. |
# doing so creates an empty quantile. |
290 |
|
# |
291 |
if lindex != lowerBound: |
if lindex != lowerBound: |
292 |
newIndex = lindex |
newIndex = lindex |
293 |
else: |
else: |
294 |
newIndex = rindex - 1 |
newIndex = rindex - 1 |
295 |
|
|
296 |
elif rcount < lcount: |
elif lcount < rcount: |
297 |
# there are fewer items to the right, so go to the right |
# there are fewer items to the left, so |
298 |
|
# try going to the left first unless |
299 |
|
# doing so creates an empty quantile. |
300 |
|
if lindex != lowerBound: |
301 |
|
newIndex = lindex |
302 |
|
else: |
303 |
newIndex = rindex - 1 |
newIndex = rindex - 1 |
|
|
|
|
adjusted = adjusted or newIndex != listIndex |
|
304 |
|
|
305 |
quantiles[qindex] = newIndex |
elif rcount < lcount: |
306 |
lowerBound = quantiles[qindex] |
# there are fewer items to the right, so go to the right |
307 |
|
newIndex = rindex - 1 |
308 |
# |
|
309 |
# since quantiles is only set if the code is at least a little |
adjusted = adjusted or newIndex != listIndex |
310 |
# successful, an empty list will be generated in the case that |
|
311 |
# we fail to get to the real body of the algorithm |
quantiles[qindex] = newIndex |
312 |
# |
lowerBound = quantiles[qindex] |
313 |
if len(quantiles) == 0: |
|
314 |
return None |
if len(quantiles) == 0: |
315 |
else: |
return None |
316 |
return (adjusted, minIndex, maxIndex, |
else: |
317 |
[(q, (q - minIndex+1) / float(numValues)) \ |
return (adjusted, minIndex, maxIndex, |
318 |
for q in quantiles]) |
[(q, (q - minIndex+1) / float(numValues)) \ |
319 |
|
for q in quantiles]) |
320 |
|
|
321 |
CLR = 0 |
CLR = 0 |
322 |
STEP = 1 |
STEP = 1 |