1 |
# Copyright (c) 2003 by Intevation GmbH |
2 |
# Authors: |
3 |
# Jonathan Coles <[email protected]> |
4 |
# |
5 |
# This program is free software under the GPL (>=v2) |
6 |
# Read the file COPYING coming with Thuban for details. |
7 |
|
8 |
import operator |
9 |
|
10 |
from color import Color |
11 |
from range import Range |
12 |
from classification import Classification, ClassGroupSingleton, \ |
13 |
ClassGroupRange, ClassGroupProperties |
14 |
|
15 |
class ClassGenerator: |
16 |
|
17 |
def GenSingletonsFromList(self, _list, numGroups, ramp): |
18 |
"""Generate a new classification consisting solely of singletons. |
19 |
|
20 |
The resulting classification will consist of at most 'numGroups' |
21 |
groups whose group properties ramp between 'prop1' and 'prop2'. There |
22 |
could be fewer groups if '_list' contains fewer that 'numGroups' items. |
23 |
|
24 |
_list -- any object that implements the iterator interface |
25 |
|
26 |
numGroups -- how many groups to generate. This can not be |
27 |
determined while the classification is being |
28 |
generated because the stepping values must |
29 |
be precalculated to ramp between prop1 and prop2. |
30 |
|
31 |
ramp -- an object which implements the CustomRamp interface |
32 |
""" |
33 |
|
34 |
clazz = Classification() |
35 |
if numGroups == 0: return clazz |
36 |
|
37 |
ramp.SetNumGroups(numGroups) |
38 |
|
39 |
for value, prop in zip(_list, ramp): |
40 |
clazz.AppendGroup(ClassGroupSingleton(value, prop)) |
41 |
|
42 |
return clazz |
43 |
|
44 |
def GenSingletons(self, min, max, numGroups, ramp): |
45 |
|
46 |
clazz = Classification() |
47 |
|
48 |
#step = int((max - min) / float(numGroups)) |
49 |
|
50 |
if numGroups > 0: |
51 |
|
52 |
step = int((max - min + 1) / float(numGroups)) |
53 |
cur_value = min |
54 |
|
55 |
ramp.SetNumGroups(numGroups) |
56 |
|
57 |
for prop in ramp: |
58 |
clazz.AppendGroup(ClassGroupSingleton(cur_value), prop) |
59 |
cur_value += step |
60 |
|
61 |
return clazz |
62 |
|
63 |
def GenUniformDistribution(self, min, max, numGroups, |
64 |
ramp, intStep = False): |
65 |
"""Generate a classification with numGroups range groups |
66 |
each with the same interval. |
67 |
|
68 |
intStep -- force the calculated stepping to an integer. |
69 |
Useful if the values are integers but the |
70 |
number of groups specified doesn't evenly |
71 |
divide (max - min). |
72 |
""" |
73 |
|
74 |
clazz = Classification() |
75 |
if numGroups == 0: return clazz |
76 |
|
77 |
ramp.SetNumGroups(numGroups) |
78 |
|
79 |
step = (max - min) / float(numGroups) |
80 |
|
81 |
if intStep: |
82 |
step = int(step) |
83 |
|
84 |
cur_min = min |
85 |
cur_max = cur_min + step |
86 |
|
87 |
i = 0 |
88 |
end = "[" |
89 |
for prop in ramp: |
90 |
|
91 |
if i == (numGroups - 1): |
92 |
cur_max = max |
93 |
end = "]" |
94 |
|
95 |
|
96 |
# this check guards against rounding issues |
97 |
if cur_min != cur_max: |
98 |
range = Range("[" + str(float(cur_min)) + ";" + |
99 |
str(float(cur_max)) + end) |
100 |
clazz.AppendGroup(ClassGroupRange(range, None, prop)) |
101 |
|
102 |
cur_min = cur_max |
103 |
cur_max += step |
104 |
i += 1 |
105 |
|
106 |
return clazz |
107 |
|
108 |
|
109 |
def GenQuantiles(self, _list, percents, ramp, _range): |
110 |
"""Generates a Classification which has groups of ranges that |
111 |
represent quantiles of _list at the percentages given in percents. |
112 |
Only the values that fall within _range are considered. |
113 |
|
114 |
Returns a tuple (adjusted, Classification) where adjusted is |
115 |
True if the Classification does not exactly represent the given |
116 |
range, or if the Classification is empty. |
117 |
|
118 |
_list -- a sort list of values |
119 |
|
120 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
121 |
represent the upper bound of each quantile |
122 |
|
123 |
ramp -- an object which implements the CustomRamp interface |
124 |
|
125 |
_range -- a Range object |
126 |
""" |
127 |
|
128 |
clazz = Classification() |
129 |
quantiles = self.CalculateQuantiles(_list, percents, _range) |
130 |
adjusted = True |
131 |
|
132 |
if quantiles is not None: |
133 |
|
134 |
numGroups = len(quantiles[3]) |
135 |
|
136 |
if numGroups != 0: |
137 |
|
138 |
adjusted = quantiles[0] |
139 |
|
140 |
ramp.SetNumGroups(numGroups) |
141 |
|
142 |
start, min, endMax, right = _range.GetRange() |
143 |
|
144 |
oldp = 0 |
145 |
i = 1 |
146 |
end = "]" |
147 |
|
148 |
for (q, p), prop in zip(quantiles[3], ramp): |
149 |
if i == numGroups: |
150 |
max = endMax |
151 |
end = right |
152 |
else: |
153 |
max = _list[q] |
154 |
|
155 |
group = ClassGroupRange(Range((start, min, max, end)), |
156 |
None, prop) |
157 |
|
158 |
group.SetLabel("%s%% - %s%%" % (round(oldp*100, 2), |
159 |
round(p*100, 2))) |
160 |
oldp = p |
161 |
start = "]" |
162 |
min = max |
163 |
clazz.AppendGroup(group) |
164 |
i += 1 |
165 |
|
166 |
return (adjusted, clazz) |
167 |
|
168 |
def CalculateQuantiles(self, _list, percents, _range): |
169 |
"""Calculate quantiles for the given _list of percents from the |
170 |
sorted list of values that are in range. |
171 |
|
172 |
This may not actually generate len(percents) quantiles if |
173 |
many of the values that fall on quantile borders are the same. |
174 |
|
175 |
Returns a tuple of the form: |
176 |
(adjusted, minIndex, maxIndex, [quantile_list]) |
177 |
|
178 |
where adjusted is True if the the quantile percentages differ from |
179 |
those supplied, minIndex is the index into _list where the |
180 |
minimum value used is located, maxIndex is the index into _list |
181 |
where the maximum value used is located, and quantile_list is a |
182 |
list of tuples of the form: (list_index, quantile_percentage) |
183 |
|
184 |
Returns None, if no quantiles could be generated based on the |
185 |
given range or input list. |
186 |
|
187 |
_list -- a sort list of values |
188 |
|
189 |
percents -- a sorted list of floats in the range 0.0-1.0 which |
190 |
represent the upper bound of each quantile |
191 |
|
192 |
_range -- a Range object |
193 |
""" |
194 |
|
195 |
quantiles = [] |
196 |
adjusted = False |
197 |
|
198 |
if len(percents) != 0: |
199 |
|
200 |
# |
201 |
# find what part of the _list range covers |
202 |
# |
203 |
minIndex = -1 |
204 |
maxIndex = -2 |
205 |
for i in xrange(0, len(_list), 1): |
206 |
if operator.contains(_range, _list[i]): |
207 |
minIndex = i |
208 |
break |
209 |
|
210 |
for i in xrange(len(_list)-1, -1, -1): |
211 |
if operator.contains(_range, _list[i]): |
212 |
maxIndex = i |
213 |
break |
214 |
|
215 |
numValues = maxIndex - minIndex + 1 |
216 |
|
217 |
if numValues > 0: |
218 |
|
219 |
# |
220 |
# build a list of unique indices into list of where each |
221 |
# quantile *should* be. set adjusted if the resulting |
222 |
# indices are different |
223 |
# |
224 |
quantiles = {} |
225 |
for p in percents: |
226 |
index = min(minIndex + int(p*numValues)-1, maxIndex) |
227 |
|
228 |
adjusted = adjusted \ |
229 |
or quantiles.has_key(index) \ |
230 |
or ((index - minIndex + 1) / float(numValues)) != p |
231 |
|
232 |
quantiles[index] = 0 |
233 |
|
234 |
quantiles = quantiles.keys() |
235 |
quantiles.sort() |
236 |
|
237 |
# |
238 |
# the current quantile index must be strictly greater than |
239 |
# the lowerBound |
240 |
# |
241 |
lowerBound = minIndex - 1 |
242 |
|
243 |
for qindex in xrange(len(quantiles)): |
244 |
if lowerBound >= maxIndex: |
245 |
# discard higher quantiles |
246 |
quantiles = quantiles[:qindex] |
247 |
break |
248 |
|
249 |
# lowerBound + 1 is always a valid index |
250 |
|
251 |
# |
252 |
# bump up the current quantile index to be a usable index |
253 |
# if it currently falls below the lowerBound |
254 |
# |
255 |
if quantiles[qindex] <= lowerBound: |
256 |
quantiles[qindex] = lowerBound + 1 |
257 |
|
258 |
listIndex = quantiles[qindex] |
259 |
value = _list[listIndex] |
260 |
|
261 |
# |
262 |
# look for similar values around the quantile index |
263 |
# |
264 |
lindex = listIndex - 1 |
265 |
while lindex > lowerBound and value == _list[lindex]: |
266 |
lindex -= 1 |
267 |
lcount = (listIndex - 1) - lindex |
268 |
|
269 |
rindex = listIndex + 1 |
270 |
while rindex < maxIndex + 1 and value == _list[rindex]: |
271 |
rindex += 1 |
272 |
rcount = (listIndex + 1) - rindex |
273 |
|
274 |
# |
275 |
# adjust the current quantile index based on how many |
276 |
# numbers in the _list are the same as the current value |
277 |
# |
278 |
newIndex = listIndex |
279 |
if lcount == rcount: |
280 |
if lcount != 0: |
281 |
# |
282 |
# there are an equal number of numbers to the left |
283 |
# and right, try going to the left first unless |
284 |
# doing so creates an empty quantile. |
285 |
# |
286 |
if lindex != lowerBound: |
287 |
newIndex = lindex |
288 |
else: |
289 |
newIndex = rindex - 1 |
290 |
|
291 |
elif lcount < rcount: |
292 |
# there are fewer items to the left, so |
293 |
# try going to the left first unless |
294 |
# doing so creates an empty quantile. |
295 |
if lindex != lowerBound: |
296 |
newIndex = lindex |
297 |
else: |
298 |
newIndex = rindex - 1 |
299 |
|
300 |
elif rcount < lcount: |
301 |
# there are fewer items to the right, so go to the right |
302 |
newIndex = rindex - 1 |
303 |
|
304 |
adjusted = adjusted or newIndex != listIndex |
305 |
|
306 |
quantiles[qindex] = newIndex |
307 |
lowerBound = quantiles[qindex] |
308 |
|
309 |
# |
310 |
# since quantiles is only set if the code is at least a little |
311 |
# successful, an empty list will be generated in the case that |
312 |
# we fail to get to the real body of the algorithm |
313 |
# |
314 |
if len(quantiles) == 0: |
315 |
return None |
316 |
else: |
317 |
return (adjusted, minIndex, maxIndex, |
318 |
[(q, (q - minIndex+1) / float(numValues)) \ |
319 |
for q in quantiles]) |
320 |
|
321 |
CLR = 0 |
322 |
STEP = 1 |
323 |
class CustomRamp: |
324 |
|
325 |
def __init__(self, prop1, prop2): |
326 |
self.prop1 = prop1 |
327 |
self.prop2 = prop2 |
328 |
|
329 |
self.count = 0 |
330 |
|
331 |
def __iter__(self): |
332 |
return self |
333 |
|
334 |
def GetRamp(self): |
335 |
return self |
336 |
|
337 |
def SetNumGroups(self, num): |
338 |
|
339 |
if num <= 0: |
340 |
return False |
341 |
|
342 |
self.count = int(num) |
343 |
num = float(num) |
344 |
|
345 |
prop1 = self.prop1 |
346 |
prop2 = self.prop2 |
347 |
|
348 |
clr = prop1.GetLineColor() |
349 |
lineColor2 = prop2.GetLineColor() |
350 |
|
351 |
self.noLine = clr is not Color.Transparent \ |
352 |
and lineColor2 is not Color.Transparent |
353 |
|
354 |
|
355 |
self.lineInfo = self.__GetColorInfo(prop1.GetLineColor(), |
356 |
prop2.GetLineColor(), |
357 |
num) |
358 |
|
359 |
self.fillInfo = self.__GetColorInfo(prop1.GetFill(), |
360 |
prop2.GetFill(), |
361 |
num) |
362 |
|
363 |
self.lineWidth = prop1.GetLineWidth() |
364 |
self.lineWidthStep = (prop2.GetLineWidth() - self.lineWidth) / num |
365 |
|
366 |
return True |
367 |
|
368 |
def next(self): |
369 |
if self.count == 0: |
370 |
raise StopIteration |
371 |
|
372 |
prop = ClassGroupProperties() |
373 |
|
374 |
if self.lineInfo is None: |
375 |
prop.SetLineColor(Color.Transparent) |
376 |
else: |
377 |
prop.SetLineColor(Color(self.lineInfo[CLR][0] / 255, |
378 |
self.lineInfo[CLR][1] / 255, |
379 |
self.lineInfo[CLR][2] / 255)) |
380 |
|
381 |
self.lineInfo[CLR][0] += self.lineInfo[STEP][0] |
382 |
self.lineInfo[CLR][1] += self.lineInfo[STEP][1] |
383 |
self.lineInfo[CLR][2] += self.lineInfo[STEP][2] |
384 |
|
385 |
if self.fillInfo is None: |
386 |
prop.SetFill(Color.Transparent) |
387 |
else: |
388 |
prop.SetFill(Color(self.fillInfo[CLR][0] / 255, |
389 |
self.fillInfo[CLR][1] / 255, |
390 |
self.fillInfo[CLR][2] / 255)) |
391 |
|
392 |
self.fillInfo[CLR][0] += self.fillInfo[STEP][0] |
393 |
self.fillInfo[CLR][1] += self.fillInfo[STEP][1] |
394 |
self.fillInfo[CLR][2] += self.fillInfo[STEP][2] |
395 |
|
396 |
|
397 |
prop.SetLineWidth(int(self.lineWidth)) |
398 |
self.lineWidth += self.lineWidthStep |
399 |
|
400 |
self.count -= 1 |
401 |
|
402 |
return prop |
403 |
|
404 |
def __GetColorInfo(self, color1, color2, numGroups): |
405 |
|
406 |
if color1 is Color.Transparent and color2 is Color.Transparent: |
407 |
# |
408 |
# returning early |
409 |
# |
410 |
return None |
411 |
elif color1 is not Color.Transparent and color2 is Color.Transparent: |
412 |
color = [color1.red * 255, |
413 |
color1.green * 255, |
414 |
color1.blue * 255] |
415 |
step = (0, 0, 0) |
416 |
elif color1 is Color.Transparent and color2 is not Color.Transparent: |
417 |
color = [color2.red * 255, |
418 |
color2.green * 255, |
419 |
color2.blue * 255] |
420 |
step = (0, 0, 0) |
421 |
else: |
422 |
color = [color1.red * 255, |
423 |
color1.green * 255, |
424 |
color1.blue * 255] |
425 |
step = ((color2.red * 255 - color1.red * 255) / numGroups, |
426 |
(color2.green * 255 - color1.green * 255) / numGroups, |
427 |
(color2.blue * 255 - color1.blue * 255) / numGroups) |
428 |
|
429 |
|
430 |
return (color, step) |
431 |
|
432 |
class MonochromaticRamp(CustomRamp): |
433 |
def __init__(self, start, end): |
434 |
sp = ClassGroupProperties() |
435 |
sp.SetLineColor(start) |
436 |
sp.SetFill(start) |
437 |
|
438 |
ep = ClassGroupProperties() |
439 |
ep.SetLineColor(end) |
440 |
ep.SetFill(end) |
441 |
|
442 |
CustomRamp.__init__(self, sp, ep) |
443 |
|
444 |
class GreyRamp(MonochromaticRamp): |
445 |
def __init__(self): |
446 |
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, 0, 0)) |
447 |
|
448 |
class RedRamp(MonochromaticRamp): |
449 |
def __init__(self): |
450 |
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(.8, 0, 0)) |
451 |
|
452 |
class GreenRamp(MonochromaticRamp): |
453 |
def __init__(self): |
454 |
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, .8, 0)) |
455 |
|
456 |
class BlueRamp(MonochromaticRamp): |
457 |
def __init__(self): |
458 |
MonochromaticRamp.__init__(self, Color(1, 1, 1), Color(0, 0, .8)) |
459 |
|
460 |
class GreenToRedRamp(MonochromaticRamp): |
461 |
def __init__(self): |
462 |
MonochromaticRamp.__init__(self, Color(0, .8, 0), Color(1, 0, 0)) |
463 |
|
464 |
class HotToColdRamp: |
465 |
|
466 |
def __iter__(self): |
467 |
return self |
468 |
|
469 |
def GetRamp(self): |
470 |
return self |
471 |
|
472 |
def SetNumGroups(self, num): |
473 |
if num < 0: |
474 |
return False |
475 |
|
476 |
self.num = float(num) |
477 |
self.index = 0 |
478 |
|
479 |
return True |
480 |
|
481 |
def next(self): |
482 |
if self.index == self.num: |
483 |
raise StopIteration |
484 |
|
485 |
clr = [1.0, 1.0, 1.0] |
486 |
|
487 |
if self.index < (.25 * self.num): |
488 |
clr[0] = 0 |
489 |
clr[1] = 4 * self.index / self.num |
490 |
elif self.index < (.5 * self.num): |
491 |
clr[0] = 0 |
492 |
clr[2] = 1 + 4 * (.25 * self.num - self.index) / self.num |
493 |
elif self.index < (.75 * self.num): |
494 |
clr[0] = 4 * (self.index - .5 * self.num) / self.num |
495 |
clr[2] = 0 |
496 |
else: |
497 |
clr[1] = 1 + 4 * (.75 * self.num - self.index) / self.num |
498 |
clr[2] = 0 |
499 |
|
500 |
self.index += 1 |
501 |
|
502 |
prop = ClassGroupProperties() |
503 |
prop.SetLineColor(Color(clr[0], clr[1], clr[2])) |
504 |
prop.SetFill(Color(clr[0], clr[1], clr[2])) |
505 |
|
506 |
return prop |
507 |
|
508 |
#class Colors16Ramp: |
509 |
# |
510 |
#def __iter__(self): |
511 |
#return self |
512 |
# |
513 |
#def GetRamp(self): |
514 |
#return self |
515 |
# |
516 |
#def SetNumGroups(self, num): |
517 |
#if num < 0: |
518 |
#return False |
519 |
# |
520 |
#self.index = 0 |
521 |
# |
522 |
#return True |