1 |
# Copyright (c) 2001, 2002 by Intevation GmbH |
# Copyright (c) 2001, 2002, 2003 by Intevation GmbH |
2 |
# Authors: |
# Authors: |
3 |
# Bernhard Herzog <[email protected]> |
# Bernhard Herzog <[email protected]> |
4 |
|
# Jan-Oliver Wagner <[email protected]> |
5 |
|
# Frank Koormann <[email protected]> |
6 |
# |
# |
7 |
# This program is free software under the GPL (>=v2) |
# This program is free software under the GPL (>=v2) |
8 |
# Read the file COPYING coming with Thuban for details. |
# Read the file COPYING coming with Thuban for details. |
13 |
|
|
14 |
__version__ = "$Revision$" |
__version__ = "$Revision$" |
15 |
|
|
16 |
|
import os |
17 |
|
import inspect |
18 |
|
import warnings |
19 |
|
|
20 |
|
from base import TitledObject |
21 |
|
|
22 |
import dbflib |
import dbflib |
|
from Thuban.common import * |
|
23 |
|
|
24 |
# the field types supported by a Table instance. |
# the field types supported by a Table instance. |
25 |
#FIELDTYPE_INT = "int" |
FIELDTYPE_INT = "int" |
26 |
#FIELDTYPE_STRING = "string" |
FIELDTYPE_STRING = "string" |
27 |
#FIELDTYPE_DOUBLE = "double" |
FIELDTYPE_DOUBLE = "double" |
28 |
|
|
29 |
|
|
30 |
# map the dbflib constants for the field types to our constants |
# map the dbflib constants for the field types to our constants |
32 |
dbflib.FTInteger: FIELDTYPE_INT, |
dbflib.FTInteger: FIELDTYPE_INT, |
33 |
dbflib.FTDouble: FIELDTYPE_DOUBLE} |
dbflib.FTDouble: FIELDTYPE_DOUBLE} |
34 |
|
|
|
class Table: |
|
35 |
|
|
36 |
|
class OldTableInterfaceMixin: |
37 |
|
|
38 |
|
"""Mixin to implement the old table interface using the new one""" |
39 |
|
|
40 |
|
def __deprecation_warning(self): |
41 |
|
"""Issue a DeprecationWarning for code hat uses the old interface""" |
42 |
|
callername = inspect.currentframe().f_back.f_code.co_name |
43 |
|
warnings.warn("The %s method of the old table interface" |
44 |
|
" is deprecated" % callername, |
45 |
|
DeprecationWarning, stacklevel = 3) |
46 |
|
|
47 |
|
def record_count(self): |
48 |
|
self.__deprecation_warning() |
49 |
|
return self.NumRows() |
50 |
|
|
51 |
|
def field_count(self): |
52 |
|
self.__deprecation_warning() |
53 |
|
return self.NumColumns() |
54 |
|
|
55 |
|
def field_info(self, field): |
56 |
|
"""Return a tuple (type, name, width, prec) for the field no. field |
57 |
|
|
58 |
|
type is the data type of the field, name the name, width the |
59 |
|
field width in characters and prec the decimal precision. width |
60 |
|
and prec will be zero if the information returned by the Column |
61 |
|
method doesn't provide values for them. |
62 |
|
""" |
63 |
|
self.__deprecation_warning() |
64 |
|
col = self.Column(field) |
65 |
|
return (col.type, col.name, |
66 |
|
getattr(col, "width", 0), getattr(col, "prec", 0)) |
67 |
|
|
68 |
|
def field_info_by_name(self, col): |
69 |
|
self.__deprecation_warning() |
70 |
|
try: |
71 |
|
return self.field_info(col) |
72 |
|
except KeyError: |
73 |
|
# FIXME: It may be that field_info raises other exceptions |
74 |
|
# when the name is not a valid column name. |
75 |
|
return None |
76 |
|
|
77 |
|
def field_range(self, fieldName): |
78 |
|
self.__deprecation_warning() |
79 |
|
min, max = self.ValueRange(fieldName) |
80 |
|
return ((min, None), (max, None)) |
81 |
|
|
82 |
|
def GetUniqueValues(self, field): |
83 |
|
self.__deprecation_warning() |
84 |
|
return self.UniqueValues(field) |
85 |
|
|
86 |
|
def read_record(self, r): |
87 |
|
self.__deprecation_warning() |
88 |
|
return self.ReadRowAsDict(r) |
89 |
|
|
90 |
|
|
91 |
|
|
92 |
|
class DBFColumn: |
93 |
|
|
94 |
|
"""Description of a column in a DBFTable |
95 |
|
|
96 |
|
Instances have the following public attributes: |
97 |
|
|
98 |
|
name -- Name of the column |
99 |
|
type -- Type of the column (one of FIELDTYPE_STRING, FIELDTYPE_INT or\ |
100 |
|
FIELDTYPE_DOUBLE) |
101 |
|
index -- The index of the column |
102 |
|
width -- the width of the data in the column |
103 |
|
prec -- The precision of the data (only valid for type == FIELDTYPE_DOUBLE) |
104 |
""" |
""" |
|
Represent a table of data. |
|
105 |
|
|
106 |
Currently this is basically just a wrapper around dbflib. |
def __init__(self, name, type, width, prec, index): |
107 |
|
self.name = name |
108 |
|
self.type = type |
109 |
|
self.width = width |
110 |
|
self.prec = prec |
111 |
|
self.index = index |
112 |
|
|
113 |
|
|
114 |
|
class DBFTable(TitledObject, OldTableInterfaceMixin): |
115 |
|
|
116 |
|
""" |
117 |
|
Table interface for the data in a DBF file |
118 |
""" |
""" |
119 |
|
|
120 |
# Implementation strategy regarding writing to a DBF file: |
# Implementation strategy regarding writing to a DBF file: |
123 |
# important that Thuban can work with read-only files. Therefore the |
# important that Thuban can work with read-only files. Therefore the |
124 |
# DBF file is opened only for reading initially. Only when |
# DBF file is opened only for reading initially. Only when |
125 |
# write_record is called we try to open the DBF file for writing as |
# write_record is called we try to open the DBF file for writing as |
126 |
# well. If that succeeds the dbf read/write DBF file will be used |
# well. If that succeeds the read/write DBF file will be used for |
127 |
# for all IO afterwards. |
# all IO afterwards. |
128 |
# |
# |
129 |
# It's important to use the same DBF file object for both reading |
# It's important to use the same DBF file object for both reading |
130 |
# and writing to make sure that reading a records after writing |
# and writing to make sure that reading a records after writing |
133 |
|
|
134 |
def __init__(self, filename): |
def __init__(self, filename): |
135 |
self.filename = filename |
self.filename = filename |
136 |
|
|
137 |
|
# Omit the extension in the title as it's not really needed and |
138 |
|
# it can be confusing because dbflib removes extensions and |
139 |
|
# appends some variations of '.dbf' before it tries to open the |
140 |
|
# file. So the title could be e.g. myshapefile.shp when the real |
141 |
|
# filename is myshapefile.dbf |
142 |
|
title = os.path.splitext(os.path.basename(self.filename))[0] |
143 |
|
TitledObject.__init__(self, title) |
144 |
|
|
145 |
self.dbf = dbflib.DBFFile(filename) |
self.dbf = dbflib.DBFFile(filename) |
146 |
|
|
147 |
# If true, self.dbf is open for writing. |
# If true, self.dbf is open for writing. |
148 |
self._writable = 0 |
self._writable = 0 |
149 |
|
|
150 |
def Destroy(self): |
# Create the column information objects |
151 |
self.dbf.close() |
self.columns = [] |
152 |
self.dbf = None |
self.column_map = {} |
153 |
|
for i in range(self.NumColumns()): |
154 |
|
ftype, name, width, prec = self.dbf.field_info(i) |
155 |
|
ftype = dbflib_fieldtypes[ftype] |
156 |
|
index = len(self.columns) |
157 |
|
col = DBFColumn(name, ftype, width, prec, index) |
158 |
|
self.columns.append(col) |
159 |
|
self.column_map[name] = col |
160 |
|
self.column_map[index] = col |
161 |
|
|
162 |
def record_count(self): |
def NumRows(self): |
163 |
"""Return the number of records""" |
"""Return the number of rows in the table""" |
164 |
return self.dbf.record_count() |
return self.dbf.record_count() |
165 |
|
|
166 |
def field_count(self): |
def NumColumns(self): |
167 |
"""Return the number of fields in a record""" |
"""Return the number of columns in the table""" |
168 |
return self.dbf.field_count() |
return self.dbf.field_count() |
169 |
|
|
170 |
def field_info(self, field): |
def Columns(self): |
171 |
"""Return a tuple (type, name, width, prec) for the field no. field |
"""Return the table's colum definitions |
172 |
|
|
173 |
type is the data type of the field, name the name, width the |
The return value is a sequence of DBFColumn instances, one for |
174 |
field width in characters and prec the decimal precision. |
each column. |
175 |
|
""" |
176 |
|
return self.columns |
177 |
|
|
178 |
|
def Column(self, col): |
179 |
|
"""Return information about the column given by its name or index |
180 |
|
|
181 |
|
The returned object is an instance of DBFColumn |
182 |
""" |
""" |
183 |
type, name, width, prec = self.dbf.field_info(field) |
return self.column_map[col] |
|
type = dbflib_fieldtypes[type] |
|
|
return type, name, width, prec |
|
184 |
|
|
185 |
def field_info_by_name(self, fieldName): |
def HasColumn(self, col): |
186 |
count = self.field_count() |
"""Return whether the table has a column with the given name or index |
187 |
|
""" |
188 |
|
return self.column_map.has_key(col) |
189 |
|
|
190 |
|
def ReadRowAsDict(self, row): |
191 |
|
"""Return the entire row as a dictionary with column names as keys""" |
192 |
|
return self.dbf.read_record(row) |
193 |
|
|
194 |
|
def ReadValue(self, row, col): |
195 |
|
"""Return the value of the specified row and column |
196 |
|
|
197 |
for i in range(count): |
The col parameter may be the index of the column or its name. |
198 |
info = self.field_info(i) |
""" |
199 |
if info[1] == fieldName: |
return self.dbf.read_record(row)[self.column_map[col].name] |
|
return info |
|
200 |
|
|
201 |
return None |
def ValueRange(self, col): |
202 |
|
"""Return the minimum and maximum values of the values in the column |
203 |
|
|
204 |
def read_record(self, record): |
The return value is a tuple (min, max) unless the table is empty |
205 |
"""Return the record no. record as a dict mapping field names to values |
in which case the return value is None. |
206 |
""" |
""" |
207 |
return self.dbf.read_record(record) |
count = self.NumRows() |
208 |
|
|
209 |
|
if count == 0: |
210 |
|
return None |
211 |
|
|
212 |
|
min = max = self.ReadValue(0, col) |
213 |
|
for i in range(1, count): |
214 |
|
value = self.ReadValue(i, col) |
215 |
|
if value < min: |
216 |
|
min = value |
217 |
|
elif value > max: |
218 |
|
max = value |
219 |
|
|
220 |
|
return (min, max) |
221 |
|
|
222 |
|
def UniqueValues(self, col): |
223 |
|
"""Return a sorted list of all unique values in the column col""" |
224 |
|
dict = {} |
225 |
|
|
226 |
|
for i in range(self.NumRows()): |
227 |
|
value = self.ReadValue(i, col) |
228 |
|
dict[value] = 0 |
229 |
|
|
230 |
|
values = dict.keys() |
231 |
|
values.sort() |
232 |
|
return values |
233 |
|
|
234 |
|
def Dependencies(self): |
235 |
|
"""Return an empty sequence. The DBFTable doesn't depend on anything""" |
236 |
|
return () |
237 |
|
|
238 |
|
# DBF specific interface parts. |
239 |
|
|
240 |
|
def Width(self, col): |
241 |
|
"""Return column width""" |
242 |
|
return self.column_map[col].width |
243 |
|
|
244 |
|
def Destroy(self): |
245 |
|
self.dbf.close() |
246 |
|
self.dbf = None |
247 |
|
|
248 |
def write_record(self, record, values): |
def write_record(self, record, values): |
249 |
"""Write the values into the record |
"""Write the values into the record |
266 |
self.dbf.write_record(record, values) |
self.dbf.write_record(record, values) |
267 |
self.dbf.commit() |
self.dbf.commit() |
268 |
|
|
269 |
|
def FileName(self): |
270 |
|
"""Return the filename the DBFTable was instantiated with""" |
271 |
|
return self.filename |
272 |
|
|
273 |
|
|
274 |
|
class MemoryColumn: |
275 |
|
|
276 |
|
def __init__(self, name, type, index): |
277 |
|
self.name = name |
278 |
|
self.type = type |
279 |
|
self.index = index |
280 |
|
|
281 |
|
class MemoryTable(TitledObject, OldTableInterfaceMixin): |
282 |
|
|
283 |
|
"""Very simple table implementation that operates on a list of tuples""" |
284 |
|
|
285 |
|
def __init__(self, fields, data): |
286 |
|
"""Initialize the MemoryTable |
287 |
|
|
288 |
|
Parameters: |
289 |
|
fields -- List of (name, field_type) pairs |
290 |
|
data -- List of tuples, one for each row of data |
291 |
|
""" |
292 |
|
self.data = data |
293 |
|
title = 'MemoryTable' |
294 |
|
TitledObject.__init__(self, title) |
295 |
|
|
296 |
|
# Create the column information objects |
297 |
|
self.columns = [] |
298 |
|
self.column_map = {} |
299 |
|
for name, ftype in fields: |
300 |
|
index = len(self.columns) |
301 |
|
col = MemoryColumn(name, ftype, index) |
302 |
|
self.columns.append(col) |
303 |
|
self.column_map[name] = col |
304 |
|
self.column_map[index] = col |
305 |
|
|
306 |
|
def NumColumns(self): |
307 |
|
"""Return the number of columns in the table""" |
308 |
|
return len(self.columns) |
309 |
|
|
310 |
|
def Column(self, col): |
311 |
|
"""Return information about the column given by its name or index |
312 |
|
|
313 |
|
The returned object is an instance of MemoryColumn. |
314 |
|
""" |
315 |
|
return self.column_map[col] |
316 |
|
|
317 |
|
def Columns(self): |
318 |
|
"""Return the table's colum definitions |
319 |
|
|
320 |
|
The return value is a sequence of MemoryColumn instances, one |
321 |
|
for each column. |
322 |
|
""" |
323 |
|
return self.columns |
324 |
|
|
325 |
|
def HasColumn(self, col): |
326 |
|
"""Return whether the table has a column with the given name or index |
327 |
|
""" |
328 |
|
return self.column_map.has_key(col) |
329 |
|
|
330 |
|
def NumRows(self): |
331 |
|
"""Return the number of rows in the table""" |
332 |
|
return len(self.data) |
333 |
|
|
334 |
|
def ReadValue(self, row, col): |
335 |
|
"""Return the value of the specified row and column |
336 |
|
|
337 |
|
The col parameter may be the index of the column or its name. |
338 |
|
""" |
339 |
|
return self.data[row][self.column_map[col].index] |
340 |
|
|
341 |
|
def ReadRowAsDict(self, index): |
342 |
|
"""Return the entire row as a dictionary with column names as keys""" |
343 |
|
return dict([(col.name, self.data[index][col.index]) |
344 |
|
for col in self.columns]) |
345 |
|
|
346 |
|
def ValueRange(self, col): |
347 |
|
"""Return the minimum and maximum values of the values in the column |
348 |
|
|
349 |
|
The return value is a tuple (min, max) unless the table is empty |
350 |
|
in which case the return value is None. |
351 |
|
""" |
352 |
|
|
353 |
|
index = self.column_map[col].index |
354 |
|
values = [row[index] for row in self.data] |
355 |
|
if not values: |
356 |
|
return None |
357 |
|
|
358 |
|
return min(values), max(values) |
359 |
|
|
360 |
|
def UniqueValues(self, col): |
361 |
|
"""Return a sorted list of all unique values in the column col |
362 |
|
|
363 |
|
col can be either column index or name. |
364 |
|
""" |
365 |
|
dict = {} |
366 |
|
|
367 |
|
for i in range(self.NumRows()): |
368 |
|
value = self.ReadValue(i, col) |
369 |
|
dict[value] = 0 |
370 |
|
|
371 |
|
values = dict.keys() |
372 |
|
values.sort() |
373 |
|
return values |
374 |
|
|
375 |
|
def Width(self, col): |
376 |
|
"""Return the maximum width of values in the column |
377 |
|
|
378 |
|
The return value is the the maximum length of string |
379 |
|
representation of the values in the column (represented by index |
380 |
|
or name). |
381 |
|
""" |
382 |
|
max = 0 |
383 |
|
|
384 |
|
type = self.column_map[col].type |
385 |
|
index = self.column_map[col].index |
386 |
|
values = [row[index] for row in self.data] |
387 |
|
if not values: |
388 |
|
return None |
389 |
|
|
390 |
|
if type == FIELDTYPE_DOUBLE: |
391 |
|
format = "%.12f" |
392 |
|
elif type == FIELDTYPE_INT: |
393 |
|
format = "%d" |
394 |
|
else: |
395 |
|
format = "%s" |
396 |
|
for value in values: |
397 |
|
l = len(format % value) |
398 |
|
if l > max: |
399 |
|
max = l |
400 |
|
|
401 |
|
return max |
402 |
|
|
403 |
|
def Dependencies(self): |
404 |
|
"""Return an empty sequence. The MemoryTable doesn't depend on anything |
405 |
|
""" |
406 |
|
return () |
407 |
|
|
408 |
|
def write_record(self, record, values): |
409 |
|
# TODO: Check for correct lenght and perhaps also |
410 |
|
# for correct types in case values is a tuple. How to report problems? |
411 |
|
# TODO: Allow values to be a dictionary and write the single |
412 |
|
# fields that are specified. |
413 |
|
self.data[record] = values |
414 |
|
|
415 |
|
|
416 |
|
|
417 |
|
def _find_dbf_column_names(names): |
418 |
|
"""Determine the column names to use in a DBF file |
419 |
|
|
420 |
|
DBF files have a length limit of 10 characters on the column names |
421 |
|
so when writing an arbitrary Thuban table to a DBF file we may have |
422 |
|
we may have to rename some of the columns making sure that they're |
423 |
|
unique in the DBF file too. |
424 |
|
|
425 |
|
Names that are already short enough will stay the same. Longer names |
426 |
|
will be truncated to 10 characters or if that isn't unique it will |
427 |
|
be truncated more and filled up with digits. |
428 |
|
|
429 |
|
The parameter names should be a list of the column names. The return |
430 |
|
value will be a dictionary mapping the names in the input list to |
431 |
|
the names to use in the DBF file. |
432 |
|
""" |
433 |
|
# mapping from the original names in table to the names in the DBF |
434 |
|
# file |
435 |
|
name_map = {} |
436 |
|
|
437 |
|
# First, we keep all names that are already short enough |
438 |
|
for i in range(len(names) - 1, -1, -1): |
439 |
|
if len(names[i]) <= 10: |
440 |
|
name_map[names[i]] = names[i] |
441 |
|
del names[i] |
442 |
|
|
443 |
|
# dict used as a set of all names already used as DBF column names |
444 |
|
used = name_map.copy() |
445 |
|
|
446 |
|
# Go through all longer names. If the name truncated to 10 |
447 |
|
# characters is not used already, we use that. Otherwise we truncate |
448 |
|
# it more and append numbers until we get an unused name |
449 |
|
for name in names: |
450 |
|
truncated = name[:10] |
451 |
|
num = 0; numstr = "" |
452 |
|
#print "truncated", truncated, num |
453 |
|
while truncated in used and len(numstr) < 10: |
454 |
|
num += 1 |
455 |
|
numstr = str(num) |
456 |
|
truncated = name[:10 - len(numstr)] + numstr |
457 |
|
#print "truncated", truncated, num |
458 |
|
if len(numstr) >= 10: |
459 |
|
# This case should never happen in practice as tables with |
460 |
|
# 10^10 columns seem very unlikely :) |
461 |
|
raise ValueError("Can't find unique dbf column name") |
462 |
|
|
463 |
|
name_map[name] = truncated |
464 |
|
used[truncated] = 1 |
465 |
|
|
466 |
|
return name_map |
467 |
|
|
468 |
|
def table_to_dbf(table, filename, records = None): |
469 |
|
"""Create the dbf file filename from the table""" |
470 |
|
dbf = dbflib.create(filename) |
471 |
|
|
472 |
|
dbflib_fieldtypes = {FIELDTYPE_STRING: dbflib.FTString, |
473 |
|
FIELDTYPE_INT: dbflib.FTInteger, |
474 |
|
FIELDTYPE_DOUBLE: dbflib.FTDouble} |
475 |
|
|
476 |
|
|
477 |
|
name_map = _find_dbf_column_names([col.name for col in table.Columns()]) |
478 |
|
|
479 |
|
# Initialise the header. Distinguish between DBFTable and others. |
480 |
|
for col in table.Columns(): |
481 |
|
width = table.Width(col.name) |
482 |
|
if col.type == FIELDTYPE_DOUBLE: |
483 |
|
prec = getattr(col, "prec", 12) |
484 |
|
else: |
485 |
|
prec = 0 |
486 |
|
dbf.add_field(name_map[col.name], dbflib_fieldtypes[col.type], |
487 |
|
width, prec) |
488 |
|
|
489 |
|
if records is None: |
490 |
|
records = range(table.NumRows()) |
491 |
|
|
492 |
|
recNum = 0 |
493 |
|
for i in records: |
494 |
|
record = {} |
495 |
|
for key, value in table.ReadRowAsDict(i).items(): |
496 |
|
record[name_map[key]] = value |
497 |
|
dbf.write_record(recNum, record) |
498 |
|
recNum += 1 |
499 |
|
dbf.close() |
500 |
|
|
501 |
|
def table_to_csv(table, filename, records = None): |
502 |
|
"""Export table to csv file.""" |
503 |
|
|
504 |
|
file = open(filename,"w") |
505 |
|
columns = table.Columns() |
506 |
|
if columns: |
507 |
|
header = "#%s" % columns[0].name |
508 |
|
for col in columns[1:]: |
509 |
|
header = header + ",%s" % col.name |
510 |
|
header = header + "\n" |
511 |
|
file.write(header) |
512 |
|
|
513 |
|
if records is None: |
514 |
|
records = range(table.NumRows()) |
515 |
|
|
516 |
|
for i in records: |
517 |
|
record = table.ReadRowAsDict(i) |
518 |
|
if len(record): |
519 |
|
line = "%s" % record[columns[0].name] |
520 |
|
for col in columns[1:]: |
521 |
|
line = line + ",%s" % record[col.name] |
522 |
|
line = line + "\n" |
523 |
|
file.write(line) |
524 |
|
file.close() |
525 |
|
|