1 |
jan |
1611 |
import shapelib, dbflib, shptree |
2 |
|
|
|
3 |
|
|
# |
4 |
|
|
# The the shapefile module |
5 |
|
|
# |
6 |
|
|
|
7 |
|
|
def make_shapefile(filename): |
8 |
bh |
2637 |
# Create a shapefile with polygons |
9 |
|
|
outfile = shapelib.create(filename, shapelib.SHPT_POLYGON) |
10 |
|
|
|
11 |
|
|
# Create one very simple polygon and write it to the shapefile. The |
12 |
|
|
# vertices should be given in clockwise order to comply with the |
13 |
|
|
# shapefile specification. |
14 |
jan |
1611 |
obj = shapelib.SHPObject(shapelib.SHPT_POLYGON, 1, |
15 |
bh |
2637 |
[[(10, 10), (10, 20), (20, 20), (10, 10)]]) |
16 |
jan |
1611 |
print obj.extents() |
17 |
|
|
print obj.vertices() |
18 |
|
|
outfile.write_object(-1, obj) |
19 |
|
|
|
20 |
bh |
2637 |
# Create a polygon with a hole. Note that according to the |
21 |
|
|
# shapefile specification, the vertices of the outer ring have to be |
22 |
|
|
# in clockwise order and the inner rings have to be in counter |
23 |
|
|
# clockwise order. |
24 |
|
|
# |
25 |
|
|
# There's an optional fourth parameter which when given must be a |
26 |
|
|
# list of part types, one for each part of the shape. For polygons, |
27 |
|
|
# the part type is always shapelib.SHPP_RING, though. The part |
28 |
|
|
# types are only relevant for SHPT_MULTIPATCH shapefiles. |
29 |
|
|
obj = shapelib.SHPObject(shapelib.SHPT_POLYGON, 1, |
30 |
|
|
[[(0, 0), (0, 40), (40, 40), (40, 0), (0, 0)], |
31 |
|
|
[(10, 10), (20, 10), (20, 20), (10, 20),(10, 10)], |
32 |
|
|
]) |
33 |
|
|
print obj.extents() |
34 |
|
|
print obj.vertices() |
35 |
|
|
outfile.write_object(-1, obj) |
36 |
|
|
|
37 |
|
|
# close the file. |
38 |
|
|
outfile.close() |
39 |
|
|
|
40 |
jan |
1611 |
def read_shapefile(filename): |
41 |
|
|
# open the shapefile |
42 |
|
|
shp = shapelib.ShapeFile(filename) |
43 |
|
|
|
44 |
|
|
# the info method returns a tuple (num_shapes, type, min, max) where |
45 |
|
|
# num_shapes is the number of shapes, type is the type code (one of |
46 |
|
|
# the SHPT* constants defined in the shapelib module) and min and |
47 |
|
|
# max are 4-element lists with the min. and max. values of the |
48 |
|
|
# vertices. |
49 |
|
|
print shp.info() |
50 |
|
|
|
51 |
|
|
# read_object reads a shape |
52 |
|
|
obj = shp.read_object(0) |
53 |
|
|
|
54 |
|
|
# The vertices method returns the shape as a list of lists of tuples. |
55 |
|
|
print obj.vertices()[0][:10] |
56 |
|
|
|
57 |
|
|
# The extents returns a tuple with two 4-element lists with the min. |
58 |
|
|
# and max. values of the vertices. |
59 |
|
|
print obj.extents() |
60 |
|
|
|
61 |
|
|
# The type attribute is the type code (one of the SHPT* constants |
62 |
|
|
# defined in the shapelib module) |
63 |
|
|
print obj.type |
64 |
|
|
|
65 |
|
|
# The id attribute is the shape id |
66 |
|
|
print obj.id |
67 |
|
|
|
68 |
|
|
# the cobject method returns a PyCObject containing the shapelib |
69 |
|
|
# SHPHandle. This is useful for passing shapefile objects to |
70 |
|
|
# C-Python extensions. |
71 |
|
|
print shp.cobject() |
72 |
|
|
|
73 |
|
|
# build a quad tree from the shapefile. The first argument must be |
74 |
|
|
# the return value of the shape file object's cobject method (this |
75 |
|
|
# is currently needed to access the shape file at the C-level). The |
76 |
|
|
# second argument is the dimension and the third the maximum depth. |
77 |
|
|
# 0 means to guess an appropriate depth |
78 |
|
|
tree = shptree.SHPTree(shp.cobject(), 2, 0) |
79 |
|
|
|
80 |
|
|
# Retrieve the ids for a region. Here we just use the extents of the |
81 |
|
|
# object previously read from the shapefile |
82 |
|
|
minima, maxima = obj.extents() |
83 |
|
|
print tree.find_shapes(minima[:2], maxima[:2]) |
84 |
|
|
|
85 |
|
|
|
86 |
|
|
make_shapefile("testfile") |
87 |
|
|
read_shapefile("testfile") |
88 |
|
|
|
89 |
|
|
# |
90 |
|
|
# Test the DBF file module. |
91 |
|
|
# |
92 |
|
|
|
93 |
|
|
def make_dbf(file): |
94 |
|
|
# create a new dbf file and add three fields. |
95 |
|
|
dbf = dbflib.create(file) |
96 |
|
|
dbf.add_field("NAME", dbflib.FTString, 20, 0) |
97 |
|
|
dbf.add_field("INT", dbflib.FTInteger, 10, 0) |
98 |
|
|
dbf.add_field("FLOAT", dbflib.FTDouble, 10, 4) |
99 |
|
|
|
100 |
|
|
def add_dbf_records(file): |
101 |
|
|
# add some records to file |
102 |
|
|
dbf = dbflib.open(file, "r+b") |
103 |
|
|
# Records can be added as a dictionary... |
104 |
|
|
dbf.write_record(0, {'NAME': "Weatherwax", "INT":1, "FLOAT":3.1415926535}) |
105 |
|
|
# ... or as a sequence |
106 |
|
|
dbf.write_record(1, ("Ogg", 2, -1000.1234)) |
107 |
|
|
|
108 |
|
|
def list_dbf(file): |
109 |
|
|
# print the contents of a dbf file to stdout |
110 |
|
|
dbf = dbflib.DBFFile(file) |
111 |
|
|
print "%d records, %d fields" % (dbf.record_count(), dbf.field_count()) |
112 |
|
|
format = "" |
113 |
|
|
for i in range(dbf.field_count()): |
114 |
|
|
type, name, len, decc = dbf.field_info(i) |
115 |
|
|
if type == 0: |
116 |
|
|
format = format + " %%(%s)%ds" % (name, len) |
117 |
|
|
elif type == 1: |
118 |
|
|
format = format + " %%(%s)%dd" % (name, len) |
119 |
|
|
elif type == 2: |
120 |
|
|
format = format + " %%(%s)%dg" % (name, len) |
121 |
|
|
print format |
122 |
|
|
for i in range(dbf.record_count()): |
123 |
|
|
print format % dbf.read_record(i) |
124 |
|
|
|
125 |
|
|
|
126 |
|
|
make_dbf("testfile") |
127 |
|
|
add_dbf_records("testfile") |
128 |
|
|
list_dbf("testfile") |