/[thuban]/branches/WIP-pyshapelib-bramz/libraries/pyshapelib/shapelibmodule.c
ViewVC logotype

Diff of /branches/WIP-pyshapelib-bramz/libraries/pyshapelib/shapelibmodule.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/thuban/libraries/pyshapelib/shapelib.i revision 2637 by bh, Thu Jun 30 14:20:46 2005 UTC branches/WIP-pyshapelib-bramz/libraries/pyshapelib/shapelib.c revision 2741 by bramz, Tue Mar 13 23:30:41 2007 UTC
# Line 1  Line 1 
1  /* SWIG (www.swig.org) interface file for shapelib  #include "shapefil.h"
2   *  #include "pyshapelib_common.h"
3   * At the moment (Dec 2000) this file is only useful to generate Python  #include "pyshapelib_api.h"
  * bindings. Invoke swig as follows:  
  *  
  *      swig -python -shadow shapelib.i  
  *  
  * to generate shapelib_wrap.c and shapelib.py. shapelib_wrap.c  
  * defines a bunch of Python-functions that wrap the appripriate  
  * shapelib functions and shapelib.py contains an object oriented  
  * wrapper around shapelib_wrap.c.  
  *  
  * Shapelib, and hence this module too, defines two types of objects,  
  * shapes and shapefiles.  
  */  
4    
5  %module shapelib  /* --- SHPObject ----------------------------------------------------------------------------------------------------- */
6    
7  /*  typedef struct
8   * First, a %{,%}-Block. These blocks are copied verbatim to the  {
9   * shapelib_wrap.c file and are not parsed by SWIG. This is the place to          PyObject_HEAD
10   * import headerfiles and define helper-functions that are needed by the          SHPObject* shpObject;
11   * automatically generated wrappers.  }
12   */  PySHPObject;
13    
14  %{  /* allocator
15     */
16    static PyObject* PySHPObject_new(PyTypeObject* type, PyObject* args, PyObject* kwds)
17    {
18            PySHPObject* self;      
19            self = (PySHPObject*) type->tp_alloc(type, 0);
20            self->shpObject = NULL;
21            return (PyObject*) self;
22    }
23    
24  /* import the shapelib headefile. */  /* deallocator
 #include "shapefil.h"  
 #include "pyshapelib_api.h"  
       
 /*  
  * Rename a few shapelib functions that are effectively methods with  
  * preprocessor macros so that they have the names that swig expects  
  * (e.g. the destructor of SHPObject has to be called delete_SHPObject)  
25   */   */
26    static void PySHPObject_dealloc(PySHPObject* self)
27    {
28            SHPDestroyObject(self->shpObject);
29            self->shpObject = NULL;
30            self->ob_type->tp_free((PyObject*)self);
31    }
32    
33    /* The constructor of SHPObject. parts is a list of lists of tuples
34    * describing the parts and their vertices just likethe output of the
35    * vertices() method. part_type_list is the list of part-types and may
36    * be NULL. For the meaning of the part-types and their default value
37    * see the Shaplib documentation.
38    */
39    static int PySHPObject_init(PySHPObject* self, PyObject* args, PyObject* kwds)
40    {
41            int type;
42            int id;
43            PyObject* parts = NULL;
44            PyObject* part_type_list = NULL;
45            
46            int num_parts;
47            int num_vertices;
48            int part_start;
49            
50            double* xs = NULL;
51            double* ys = NULL;
52            int* part_starts = NULL;
53            int* part_types = NULL;
54            
55            int i;
56            int return_code = -1;
57            
58            /* first, unpack parameters */
59            if (kwds != NULL && PyDict_Size(kwds) > 0)
60            {
61                    PyErr_Format(PyExc_TypeError, "shapelib.SHPObject.__init__ takes no keyword arguments");
62                    return -1;
63            }
64            if (!PyArg_ParseTuple(args, "iiO|O", &type, &id, &parts, &part_type_list)) return -1;
65    
66            if (!PySequence_Check(parts))
67            {
68                    PyErr_SetString(PyExc_TypeError, "parts is not a sequence");
69                    return -1;
70            }
71            num_parts = PySequence_Length(parts);
72            if (num_parts < 0)
73            {
74                    PyErr_SetString(PyExc_TypeError, "cannot determine length of parts");
75                    return -1;
76            }
77            
78            /* parts and part_types have to have the same lengths */
79            if (part_type_list == Py_None)
80            {
81                    Py_DECREF(part_type_list);
82                    part_type_list = NULL;
83            }
84            if (part_type_list)
85            {
86                    if (!PySequence_Check(parts))
87                    {
88                            PyErr_SetString(PyExc_TypeError, "part_type_list is not a sequence");
89                            return -1;
90                    }
91                    if (PySequence_Length(part_type_list) != num_parts)
92                    {
93                            PyErr_SetString(PyExc_TypeError, "parts and part_types have to have the same lengths");
94                            return -1;
95                    }
96            }
97    
98            /* determine how many vertices there are altogether */
99            num_vertices = 0;
100            for (i = 0; i < num_parts; ++i)
101            {
102                    PyObject* part = PySequence_ITEM(parts, i);
103                    if (!PySequence_Check(part))
104                    {
105                            PyErr_SetString(PyExc_TypeError, "at least one item in parts is not a sequence");
106                            Py_DECREF(part);
107                            return -1;
108                    }
109                    num_vertices += PySequence_Length(part);
110                    Py_DECREF(part);
111            }
112    
113            /* allocate the memory for the various arrays and check for memory errors */
114            xs = malloc(num_vertices * sizeof(double));
115            ys = malloc(num_vertices * sizeof(double));
116            part_starts = malloc(num_parts * sizeof(int));
117            part_types = part_type_list ? malloc(num_parts * sizeof(int)) : 0;
118    
119            if (!xs || !ys || !part_starts || (part_type_list && !part_types))
120            {
121                    PyErr_NoMemory();
122                    goto exit;
123            }
124    
125            /* convert the part types */
126            if (part_type_list)
127            {
128                    for (i = 0; i < num_parts; i++)
129                    {
130                            PyObject* otype = PySequence_ITEM(part_type_list, i);
131                            part_types[i] = PyInt_AsLong(otype);
132                            Py_DECREF(otype);
133                            if (part_types[i] < 0)
134                            {
135                                    PyErr_SetString(PyExc_TypeError, "at least one item in part_type_list is not an integer or is negative");
136                                    goto exit;
137                            }
138                    }
139            }
140    
141            /* convert the list of parts */
142            part_start = 0;
143            for (i = 0; i < num_parts; ++i)
144            {
145                    int j, length;
146                    
147                    PyObject* part = PySequence_ITEM(parts, i);
148                    length = PySequence_Length(part);
149                    part_starts[i] = part_start;
150    
151                    for (j = 0; j < length; ++j)
152                    {
153                            PyObject* vertex = PySequence_ITEM(part, j);
154                            if (!PyArg_ParseTuple(vertex, "dd", xs + part_start + j, ys + part_start + j))
155                            {
156                                    PyErr_SetString(PyExc_TypeError, "at least one part contains an vertex that's not a tuple of two doubles");
157                                    Py_DECREF(vertex);
158                                    Py_DECREF(part);
159                                    goto exit;
160                            }
161                            Py_DECREF(vertex);
162                    }
163                    Py_DECREF(part);
164                    part_start += length;
165            }
166    
167            self->shpObject = SHPCreateObject(type, id, num_parts, part_starts, part_types, num_vertices, xs, ys, NULL, NULL);
168            return_code = 0;
169            
170    exit:
171            free(xs);
172            free(ys);
173            free(part_starts);
174            free(part_types);
175            return return_code;
176    }
177    
 #define delete_SHPObject SHPDestroyObject  
       
178  /*  /*
179   * The extents() method of SHPObject.  * The extents() method of SHPObject.
180   *  *
181   * Return the extents as a tuple of two 4-element lists with the min.  * Return the extents as a tuple of two 4-element lists with the min.
182   * and max. values of x, y, z, m.  * and max. values of x, y, z, m.
183   */  */
184  static PyObject *  static PyObject* PySHPObject_extents(PySHPObject* self)
 SHPObject_extents(SHPObject *object)  
185  {  {
186      return Py_BuildValue("[dddd][dddd]",          SHPObject* object = self->shpObject;
187                           object->dfXMin, object->dfYMin, object->dfZMin,          return Py_BuildValue("(dddd)(dddd)",
188                           object->dfMMin,                          object->dfXMin, object->dfYMin, object->dfZMin, object->dfMMin,
189                           object->dfXMax, object->dfYMax, object->dfZMax,                          object->dfXMax, object->dfYMax, object->dfZMax, object->dfMMax);
                          object->dfMMax);  
190  }  }
191    
192    
193  /*  /*
194   * The vertices() method of SHPObject.  * The vertices() method of SHPObject.
195   *  *
196   * Return the x and y coords of the vertices as a list of lists of  * Return the x and y coords of the vertices as a list of lists of
197   * tuples.  * tuples.
198   */  */
199    
200  static PyObject* build_vertex_list(SHPObject *object, int index, int length);  static PyObject* build_vertex_list(SHPObject *object, int index, int length);
201    
202  static PyObject*  static PyObject* PySHPObject_vertices(PySHPObject* self)
 SHPObject_vertices(SHPObject *object)  
203  {  {
204      PyObject *result = NULL;          PyObject *result = NULL;
205      PyObject *part = NULL;          PyObject *part = NULL;
206      int part_idx, vertex_idx;          int part_idx, vertex_idx;
207      int length = 0;          int length = 0;
208            SHPObject* object = self->shpObject;
209    
210      if (object->nParts > 0)          if (object->nParts > 0)
211      {          {
212          /* A multipart shape. Usual for SHPT_ARC and SHPT_POLYGON */                  /* A multipart shape. Usual for SHPT_ARC and SHPT_POLYGON */
213                    
214          result = PyList_New(object->nParts);                  result = PyList_New(object->nParts);
215          if (!result)                  if (!result)
216              return NULL;                          return NULL;
217    
218                    for (part_idx = 0, vertex_idx = 0; part_idx < object->nParts; part_idx++)
219                    {
220                            if (part_idx < object->nParts - 1)
221                            length = (object->panPartStart[part_idx + 1]
222                                    - object->panPartStart[part_idx]);
223                            else
224                            length = object->nVertices - object->panPartStart[part_idx];
225                            
226                            part = build_vertex_list(object, vertex_idx, length);
227                            if (!part)
228                            goto fail;
229    
230                            if (PyList_SetItem(result, part_idx, part) < 0)
231                            goto fail;
232    
233          for (part_idx = 0, vertex_idx = 0; part_idx < object->nParts;                          vertex_idx += length;
234               part_idx++)                  }
235            }
236            else
237          {          {
238              if (part_idx < object->nParts - 1)                  /* only one part. usual for SHPT_POINT */
239                  length = (object->panPartStart[part_idx + 1]                  result = build_vertex_list(object, 0, object->nVertices);
240                            - object->panPartStart[part_idx]);          }
241              else  
242                  length = object->nVertices - object->panPartStart[part_idx];          return result;
243                
244              part = build_vertex_list(object, vertex_idx, length);  fail:
245              if (!part)          Py_XDECREF(part);
246                  goto fail;          Py_DECREF(result);
247            return NULL;
             if (PyList_SetItem(result, part_idx, part) < 0)  
                 goto fail;  
   
             vertex_idx += length;  
         }  
     }  
     else  
     {  
         /* only one part. usual for SHPT_POINT */  
         result = build_vertex_list(object, 0, object->nVertices);  
     }  
   
     return result;  
   
  fail:  
     Py_XDECREF(part);  
     Py_DECREF(result);  
     return NULL;  
248  }  }
249    
250    
251  /* Return the length coordinates of the shape object starting at vertex  /* Return the length coordinates of the shape object starting at vertex
252   * index as a Python-list of tuples. Helper function for  * index as a Python-list of tuples. Helper function for
253   * SHPObject_vertices.  * SHPObject_vertices.
254   */  */
255  static PyObject*  static PyObject* build_vertex_list(SHPObject *object, int index, int length)
 build_vertex_list(SHPObject *object, int index, int length)  
256  {  {
257      int i;          int i;
258      PyObject * list;          PyObject * list;
259      PyObject * vertex = NULL;          PyObject * vertex = NULL;
260    
261      list = PyList_New(length);          list = PyList_New(length);
262      if (!list)          if (!list)
263          return NULL;                  return NULL;
264    
265      for (i = 0; i < length; i++, index++)          for (i = 0; i < length; i++, index++)
266      {          {
267          vertex = Py_BuildValue("dd", object->padfX[index],                  vertex = Py_BuildValue("dd", object->padfX[index],
268                                 object->padfY[index]);                                          object->padfY[index]);
269          if (!vertex)                  if (!vertex)
270              goto fail;                          goto fail;
271          if (PyList_SetItem(list, i, vertex) < 0)                  if (PyList_SetItem(list, i, vertex) < 0)
272              goto fail;                          goto fail;
273      }          }
   
     return list;  
   
  fail:  
     Py_XDECREF(vertex);  
     Py_DECREF(list);  
     return NULL;  
 }  
274    
275            return list;
276    
277    fail:
278            Py_XDECREF(vertex);
279            Py_DECREF(list);
280            return NULL;
281    }
282    
283    
284    
285  /* The constructor of SHPObject. parts is a list of lists of tuples  static PyObject* PySHPObject_part_types(PySHPObject* self)
  * describing the parts and their vertices just likethe output of the  
  * vertices() method. part_type_list is the list of part-types and may  
  * be NULL. For the meaning of the part-types and their default value  
  * see the Shaplib documentation.  
  */  
 SHPObject * new_SHPObject(int type, int id, PyObject * parts,  
                           PyObject * part_type_list)  
286  {  {
287      /* arrays to hold thex and y coordinates of the  vertices */          int i;
288      double *xs = NULL, *ys = NULL;          PyObject* result = NULL;
289      /* number of all vertices of all parts */          SHPObject* object = self->shpObject;
290      int num_vertices;          
291      /* number of parts in the list parts */          if (object->nParts == 0 || object->panPartType == 0)
     int num_parts;  
     /* start index of in xs and ys of the part currently worked on */  
     int part_start;  
     /* array of start indices in xs and ys as expected by shapelib */  
     int *part_starts = NULL;  
   
     /* generic counter */  
     int i;  
   
     /* array of part types. holds the converted content of  
      * part_type_list. Stays NULL of part_type_list is NULL  
      */  
     int *part_types = NULL;  
   
     /* temporary python objects referring to the the list items being  
      * worked on.  
      */  
     PyObject * part = NULL, *tuple = NULL;  
   
     /* The result object */  
     SHPObject *result;  
   
     num_parts = PySequence_Length(parts);  
     num_vertices = 0;  
   
     /* parts and part_types have to have the same lengths */  
     if (part_type_list  
         && PySequence_Length(parts) != PySequence_Length(part_type_list))  
     {  
         PyErr_SetString(PyExc_TypeError,  
                         "parts and part_types have to have the same lengths");  
         return NULL;  
     }  
   
     /* determine how many vertices there are altogether */  
     for (i = 0; i < num_parts; i++)  
     {  
         PyObject * part = PySequence_GetItem(parts, i);  
         if (!part)  
             return NULL;  
         num_vertices += PySequence_Length(part);  
         Py_DECREF(part);  
     }  
   
     /* allocate the memory for the various arrays and check for memory  
        errors */  
     xs = malloc(num_vertices * sizeof(double));  
     ys = malloc(num_vertices * sizeof(double));  
     part_starts = malloc(num_parts * sizeof(int));  
     if (part_type_list)  
         part_types = malloc(num_parts * sizeof(int));  
   
     if (!xs || !ys || !part_starts || (part_type_list && !part_types))  
     {  
         PyErr_NoMemory();  
         goto fail;  
     }  
   
     /* convert the part types */  
     if (part_type_list)  
     {  
         for (i = 0; i < num_parts; i++)  
292          {          {
293              PyObject * otype = PySequence_GetItem(part_type_list, i);                  Py_RETURN_NONE;
             if (!otype)  
                 return NULL;  
             part_types[i] = PyInt_AsLong(otype);  
             Py_DECREF(otype);  
294          }          }
295      }          
296            result = PyTuple_New(object->nParts);
297      /* convert the list of parts */          if (!result) return NULL;
298      part_start = 0;          
299      for (i = 0; i < num_parts; i++)          for (i = 0; i < object->nParts; ++i)
300      {          {
301          int j, length;                  /* PyTuple_SetItem steals a reference */
302                    PyObject* part_type = PyInt_FromLong((long)object->panPartType[i]);
303          part = PySequence_GetItem(parts, i);                  if (!part_type || PyTuple_SetItem(result, i, part_type) < 0) goto fail;
304          length = PySequence_Length(part);          }      
305          part_starts[i] = part_start;          return result;
306            
307          for (j = 0; j < length; j++)  fail:
308          {          Py_DECREF(result);
309              tuple = PySequence_GetItem(part, j);          return NULL;
             if (!tuple)  
                 goto fail;  
   
             if (!PyArg_ParseTuple(tuple, "dd", xs + part_start + j,  
                                   ys + part_start + j))  
             {  
                 goto fail;  
             }  
             Py_DECREF(tuple);  
             tuple = NULL;  
         }  
         Py_DECREF(part);  
         part = NULL;  
         part_start += length;  
     }  
   
     result = SHPCreateObject(type, id, num_parts, part_starts, part_types,  
                              num_vertices, xs, ys, NULL, NULL);  
     free(xs);  
     free(ys);  
     free(part_starts);  
     free(part_types);  
     return result;  
   
  fail:  
     free(xs);  
     free(ys);  
     free(part_starts);  
     free(part_types);  
     Py_XDECREF(part);  
     Py_XDECREF(tuple);  
     return NULL;  
310  }  }
311    
 %}  
312    
313    
314    static PyObject* PySHPObject_type(PySHPObject* self, void* closure)
315    {
316            return PyInt_FromLong(self->shpObject->nSHPType);
317    }
318    
319    
 /*  
  * The SWIG Interface definition.  
  */  
320    
321  /* include some common SWIG type definitions and standard exception  static PyObject* PySHPObject_id(PySHPObject* self, void* closure)
322     handling code */  {
323  %include typemaps.i          return PyInt_FromLong(self->shpObject->nShapeId);
324  %include exception.i  }
325    
326    
327  /*  
328   *  SHPObject -- Represents one shape  /* return a string that can be feeded to eval() to reconstruct the object,
329     * assuming a proper context
330   */   */
331    static PyObject* PySHPObject_repr(PySHPObject* self)
332    {
333            PyObject* format = NULL;
334            PyObject* args = NULL;
335            PyObject* result = NULL;
336            
337            format = PyString_FromString("shapelib.SHPObject(%i, %i, %s, %s)");
338            if (!format) return NULL;
339    
340  /* Exception typemap for the SHPObject constructor. The constructor the          args = Py_BuildValue("iiNN",
341     the wrapper function defined above which returns NULL in case of                  self->shpObject->nSHPType,
342     error. */                  self->shpObject->nShapeId,
343                      PySHPObject_vertices(self),
344  %typemap(python,except) SHPObject*new_SHPObject {                  PySHPObject_part_types(self));
345      $function;          if (!args)
346      if (PyErr_Occurred())          {
347          return NULL;                  Py_DECREF(format);
348                    return NULL;
349            }
350            
351            result = PyString_Format(format, args);
352            Py_DECREF(args);
353            Py_DECREF(format);
354            return result;
355  }  }
356    
 /* Define the SHPObject struct for SWIG. This has to have the same name  
  * as the underlying C-struct in shapfil.h, but we don't have to repeat  
  * all the fields here, only those we want to access directly, and we  
  * can define methods for the object oriented interface.  
  */  
357    
 typedef struct {  
358    
359      /* The shape object has two read-only attributes: */  static PyMethodDef PySHPObject_methods[] =
360    {
361            {"extents", (PyCFunction)PySHPObject_extents, METH_NOARGS, NULL},
362            {"vertices", (PyCFunction)PySHPObject_vertices, METH_NOARGS, NULL},
363            {"part_types", (PyCFunction)PySHPObject_part_types, METH_NOARGS, NULL},
364            {NULL}
365    };
366    
367      /* The type of the shape. In the c-struct defined the field is  static PyGetSetDef PySHPObject_getsetters[] =
368       * called 'nSHPType' but for the python bindings 'type' is more  {
369       * appropriate.          {"type", (getter)PySHPObject_type, NULL, NULL },
370       */          {"id", (getter)PySHPObject_id, NULL, NULL },
371      %readonly %name(type) int nSHPType;          {NULL}
372    };
     /* The id of the shape. Here 'id' is a better name than 'nShapeId'. */  
     %readonly %name(id) int nShapeId;  
   
     /* The methods */  
     %addmethods {  
   
         /* the constructor */  
         SHPObject(int type, int id, PyObject * parts,  
                   PyObject * part_types = NULL);  
   
         /* The destructor */  
         ~SHPObject();  
   
         /* extents and vertices correspond to the SHPObject_extents and  
          * SHPObject_vertices defined above  
          */  
         PyObject *extents();  
         PyObject *vertices();  
     }  
 } SHPObject;  
373    
374    static PyTypeObject PySHPObjectType = PYSHAPELIB_DEFINE_TYPE(PySHPObject, "shapelib.SHPObject", 0);
375    
 /*  
  * ShapeFile --  Represents the shape file  
  */  
376    
377  /* Here we do things a little different. We define a new C-struct that  /* --- ShapeFile ----------------------------------------------------------------------------------------------------- */
  * holds the SHPHandle. This is mainly done so we can separate the  
  * close() method from the destructor but it also helps with exception  
  * handling.  
  *  
  * After the ShapeFile has been opened or created the handle is not  
  * NULL. The close() method closes the file and sets handle to NULL as  
  * an indicator that the file has been closed.  
  */  
378    
379  /* First, define the C-struct */  typedef struct
380  %{  {
381      typedef struct {          PyObject_HEAD
382          SHPHandle handle;          SHPHandle handle;
383      } ShapeFile;  }
384  %}  PyShapeFile;
385    
386  /* define and use some typemaps for the info() method whose  /* allocator
  * C-implementation has four output parameters that are returned through  
  * pointers passed into the function. SWIG already has definitions for  
  * common types such as int* and we can use those for the first two  
  * parameters:  
387   */   */
388    static PyObject* PyShapeFile_new(PyTypeObject* type, PyObject* args, PyObject* kwds)
389  %apply int * OUTPUT { int * output_entities }  {
390  %apply int * OUTPUT { int * output_type }          PyShapeFile* self;      
391            self = (PyShapeFile*) type->tp_alloc(type, 0);
392            self->handle = NULL;
393            return (PyObject*) self;
394    }
395    
396  /* for the last two, the 4-element arrays of min- and max-values, we  /* constructor
  * have to define our own typemaps:  
397   */   */
398  %typemap (python,ignore) double * extents(double temp[4]) {  static int PyShapeFile_init(PyShapeFile* self, PyObject* args, PyObject* kwds)
399      $target = temp;  {
400            char* file;
401            char* mode = "rb";
402            if (kwds != NULL && PyDict_Size(kwds) > 0)
403            {
404                    PyErr_Format(PyExc_TypeError, "shapelib.ShapeFile.__init__ takes no keyword arguments");
405                    return -1;
406            }
407            if (!PyArg_ParseTuple(args, "s|s", &file, &mode)) return -1;
408            
409            self->handle = SHPOpen(file, mode);
410            return self->handle ? 0 : -1;
411  }  }
412    
413  %typemap (python,argout) double * extents {  static PyObject* PyShapeFile_close(PyShapeFile* self)
414      PyObject * list = Py_BuildValue("[dddd]",  {
415                                      $source[0], $source[1],          SHPClose(self->handle);
416                                      $source[2], $source[3]);          self->handle = NULL;
417      $target = t_output_helper($target,list);          Py_RETURN_NONE;
418  }  }
419    
420  %apply double * extents { double * output_min_bounds }  /* destructor
 %apply double * extents { double * output_max_bounds }  
   
 /* The first argument to the ShapeFile methods is a ShapeFile pointer.  
  * We have to check whether handle is not NULL in most methods but not  
  * all. In the destructor and the close method, it's OK for handle to be  
  * NULL. We achieve this by checking whether the preprocessor macro  
  * NOCHECK_$name is defined. SWIG replaces $name with the name of the  
  * function for which the code is inserted. In the %{,%}-block below we  
  * define the macros for the destructor and the close() method.  
421   */   */
422    static void PyShapeFile_dealloc(PyShapeFile* self)
423    {
424            PyShapeFile_close(self);
425            self->ob_type->tp_free((PyObject*)self);
426    }
427    
428    static PyObject* PyShapeFile_info(PyShapeFile* self)
429    {
430            SHPHandle handle = self->handle;
431            return Py_BuildValue("ii(dddd)(dddd)",
432                            handle->nRecords, handle->nShapeType,
433                            handle->adBoundsMin[0], handle->adBoundsMin[1], handle->adBoundsMin[2], handle->adBoundsMin[3],
434                            handle->adBoundsMax[0], handle->adBoundsMax[1], handle->adBoundsMax[2], handle->adBoundsMax[3]);
435    }
436    
437  %typemap(python,check) ShapeFile *{  static PyObject* PyShapeFile_read_object(PyShapeFile* self, PyObject* args)
438      %#ifndef NOCHECK_$name  {
439      if (!$target || !$target->handle)          int index;
440          SWIG_exception(SWIG_TypeError, "shapefile already closed");          SHPObject* object;
441      %#endif          PySHPObject* result;
442  }          
443            if (!PyArg_ParseTuple(args, "i", &index)) return NULL;
444  %{          
445  #define NOCHECK_delete_ShapeFile          object = SHPReadObject(self->handle, index);    
446  #define NOCHECK_ShapeFile_close          if (!object)
447  %}          {
448                    PyErr_SetString(PyExc_RuntimeError, "failed to read object");
449  /* An exception handle for the constructor and the module level open()                  return NULL;
450   * and create() functions.          }
451   *          
452   * Annoyingly, we *have* to put braces around the SWIG_exception()          result = PyObject_New(PySHPObject, &PySHPObjectType);
453   * calls, at least in the python case, because of the way the macro is          if (!result)
454   * written. Of course, always putting braces around the branches of an          {
455   * if-statement is often considered good practice.                  return PyErr_NoMemory();
456   */          }
457  %typemap(python,except) ShapeFile * {          
458      $function;          result->shpObject = object;
459      if (!$source)          return (PyObject*) result;
     {  
         SWIG_exception(SWIG_MemoryError, "no memory");  
     }  
     else if (!$source->handle)  
     {  
         SWIG_exception(SWIG_IOError, "$name failed");  
     }  
460  }  }
461    
462    static PyObject* PyShapeFile_write_object(PyShapeFile* self, PyObject* args)
463    {
464            int index, result;
465            PyObject* object;
466            
467            if (!PyArg_ParseTuple(args, "iO", &index, &object)) return NULL;
468            
469            if (!PyObject_IsInstance(object, (PyObject*)&PySHPObjectType))
470            {
471                    PyErr_SetString(PyExc_TypeError, "object is not a SHPObject");
472                    return NULL;
473            }
474            
475            result = SHPWriteObject(self->handle, index, ((PySHPObject*)object)->shpObject);
476            if (result < 0)
477            {
478                    PyErr_SetString(PyExc_RuntimeError, "failed to write object");
479                    return NULL;
480            }
481            return PyInt_FromLong((long)result);
482    }
483    
484  /*  static PyObject* PyShapeFile_cobject(PyShapeFile* self)
485   * The SWIG-version of the ShapeFile struct.  {
486   */          return PyCObject_FromVoidPtr(self->handle, NULL);
487    }
488    
489  typedef struct  static PyObject* PyShapeFile_repr(PyShapeFile* self)
490  {  {
491      /* Only methods and no attributes here: */          /* TODO: it would be nice to do something like "shapelib.ShapeFile(filename, mode)" instead */
492      %addmethods {          return PyString_FromFormat("<shapelib.ShapeFile object at %p>", self->handle);
493    }
494    
495          /* The constructor. Takes two arguments, the filename and the  static PyMethodDef PyShapeFile_methods[] =
496           * optinal mode which are passed through to SHPOpen (due to the  {
497           * renaming trick)          {"close", (PyCFunction)PyShapeFile_close, METH_NOARGS, "close the shape file" },
498           */          {"info", (PyCFunction)PyShapeFile_info, METH_NOARGS,
499          ShapeFile(char *file, char * mode = "rb") {                  "Return a tuple (NUM_SHAPES, TYPE, MIN, MAX) where NUM_SHAPES is the number of shapes in the file, TYPE is the "
500              ShapeFile * self = malloc(sizeof(ShapeFile));                  "shape type and MIN and MAX are 4-element tuples with the min. and max. values of the data." },
501              if (self)          {"read_object", (PyCFunction)PyShapeFile_read_object, METH_VARARGS, "Return object number i" },
502                  self->handle = SHPOpen(file, mode);          {"write_object", (PyCFunction)PyShapeFile_write_object, METH_VARARGS, "Write an object"},
503              return self;          {"cobject", (PyCFunction)PyShapeFile_cobject, METH_NOARGS, "Return the shapelib SHPHandle as a Python CObject"},
504          }          {NULL}
505    };
         /* The destructor. Equivalent to SHPClose */  
         ~ShapeFile() {  
             if (self->handle)  
                 SHPClose(self->handle);  
             free(self);  
         }  
   
         /* close the shape file and set handle to NULL */  
         void close() {  
             if (self->handle)  
             {  
                 SHPClose(self->handle);  
                 self->handle = NULL;  
             }  
         }  
   
         /* info() -- Return a tuple (NUM_SHAPES, TYPE, MIN, MAX) where  
          * NUM_SHAPES is the number of shapes in the file, TYPE is the  
          * shape type and MIN and MAX are 4-element lists with the min.  
          * and max. values of the data.  
          *  
          * The arguments of the underlying shapelib function SHPGetInfo  
          * are all output parameters. To tell SWIG this, we have defined  
          * some typemaps above  
          */  
         void info(int * output_entities, int * output_type,  
                   double * output_min_bounds, double *output_max_bounds) {  
             SHPGetInfo(self->handle, output_entities, output_type,  
                        output_min_bounds, output_max_bounds);  
         }  
   
         /* Return object number i */  
         %new SHPObject * read_object(int i) {  
             return SHPReadObject(self->handle, i);  
         }  
   
         /* Write an object */  
         int write_object(int iShape, SHPObject * psObject) {  
             return SHPWriteObject(self->handle, iShape, psObject);  
         }  
   
         /* Return the shapelib SHPHandle as a Python CObject */  
         PyObject * cobject() {  
             return PyCObject_FromVoidPtr(self->handle, NULL);  
         }  
     }  
506    
507  } ShapeFile;  static PyGetSetDef PyShapeFile_getsetters[] =
508    {
509            {NULL}
510    };
511    
512    static PyTypeObject PyShapeFileType = PYSHAPELIB_DEFINE_TYPE(PyShapeFile, "shapelib.ShapeFile", 0);
513    
514  /*  /* --- shapelib ------------------------------------------------------------------------------------------------------ */
  * Two module level functions, open() and create() that correspond to  
  * SHPOpen and SHPCreate respectively. open() is equivalent to the  
  * ShapeFile constructor.  
  */  
515    
516  %{  static PyObject* shapelib_open(PyObject* module, PyObject* args)
517      ShapeFile * open_ShapeFile(const char *filename, const char * mode) {  {
518          ShapeFile * self = malloc(sizeof(ShapeFile));          return PyObject_CallObject((PyObject*)&PyShapeFileType, args);
519          if (self)  }
             self->handle = SHPOpen(filename, mode);  
         return self;  
     }  
 %}  
   
 %name(open) %new ShapeFile *open_ShapeFile(const char *filename,  
                                            const char * mode = "rb");  
   
   
 %{  
     ShapeFile * create_ShapeFile(const char *filename, int type) {  
         ShapeFile * self = malloc(sizeof(ShapeFile));  
         if (self)  
             self->handle = SHPCreate(filename, type);  
         return self;  
     }  
 %}      
   
 %name(create) %new ShapeFile * create_ShapeFile(const char *filename,  
                                                 int type);  
       
   
 /* Module level function to expose some of the shapelib functions linked  
  * with the shapefile C-module to other Python extension modules. This  
  * is a kludge to make a Thuban extension work that reads shapes from  
  * shapefiles opened by the shapefile module.  
  */  
520    
521  %{  static PyObject* shapelib_create(PyObject* module, PyObject* args)
522      static PyShapeLibAPI the_api = {  {
523            char* file;
524            int type;
525            PyShapeFile* result;
526            
527            if (!PyArg_ParseTuple(args, "si", &file, &type)) return NULL;
528            
529            result = PyObject_New(PyShapeFile, &PyShapeFileType);
530            if (!result)
531            {
532                    return PyErr_NoMemory();
533            }
534            
535            result->handle = SHPCreate(file, type);
536            if (!result->handle)
537            {
538                    PyObject_Del((PyObject*)result);
539                    PyErr_SetString(PyExc_RuntimeError, "Failed to create ShapeFile");
540                    return NULL;
541            }
542            
543            return (PyObject*) result;
544    }
545            
546    static PyShapeLibAPI shapelib_the_api =
547    {
548          SHPReadObject,          SHPReadObject,
549          SHPDestroyObject,          SHPDestroyObject,
550          SHPCreateTree,          SHPCreateTree,
551          SHPDestroyTree,          SHPDestroyTree,
552          SHPTreeFindLikelyShapes          SHPTreeFindLikelyShapes
553      };  };
   
     PyObject * c_api() {  
         return PyCObject_FromVoidPtr(&the_api, NULL);  
     }  
 %}  
   
 PyObject * c_api();  
554    
555    static PyObject* shapelib_c_api(PyObject* module)
556    {
557            return PyCObject_FromVoidPtr(&shapelib_the_api, NULL);
558    }
559    
560  /*  static PyObject* shapelib_type_name(PyObject* module, PyObject* args)
561   *  Module Level functions  {
562   */          int type;
563            if (!PyArg_ParseTuple(args, "i", &type)) return NULL;
564  /* convert shapefile types to names */          return PyString_FromString(SHPTypeName(type));
565  %name(type_name) const char *SHPTypeName(int nSHPType);  }
 %name(part_type_name) const char *SHPPartTypeName(int nPartType);  
   
566    
567  /*  static PyObject* shapelib_part_type_name(PyObject* module, PyObject* args)
568   * Finally, constants copied from shapefil.h  {
569   */          int type;
570            if (!PyArg_ParseTuple(args, "i", &type)) return NULL;
571            return PyString_FromString(SHPPartTypeName(type));
572    }
573    
574  /* -------------------------------------------------------------------- */  static PyMethodDef shapelib_methods[] =
575  /*      Shape types (nSHPType)                                          */  {
576  /* -------------------------------------------------------------------- */          {"open", (PyCFunction)shapelib_open, METH_VARARGS, "open a ShapeFile" },
577  #define SHPT_NULL       0          {"create", (PyCFunction)shapelib_create, METH_VARARGS, "create a ShapeFile" },
578  #define SHPT_POINT      1          {"c_api", (PyCFunction)shapelib_c_api, METH_NOARGS, "get C API of shapelib" },
579  #define SHPT_ARC        3          {"type_name", (PyCFunction)shapelib_type_name, METH_VARARGS, "return type as string" },
580  #define SHPT_POLYGON    5          {"part_type_name", (PyCFunction)shapelib_part_type_name, METH_VARARGS, "return part type as string" },
581  #define SHPT_MULTIPOINT 8          {NULL}
582  #define SHPT_POINTZ     11  };
 #define SHPT_ARCZ       13  
 #define SHPT_POLYGONZ   15  
 #define SHPT_MULTIPOINTZ 18  
 #define SHPT_POINTM     21  
 #define SHPT_ARCM       23  
 #define SHPT_POLYGONM   25  
 #define SHPT_MULTIPOINTM 28  
 #define SHPT_MULTIPATCH 31  
   
   
 /* -------------------------------------------------------------------- */  
 /*      Part types - everything but SHPT_MULTIPATCH just uses           */  
 /*      SHPP_RING.                                                      */  
 /* -------------------------------------------------------------------- */  
   
 #define SHPP_TRISTRIP   0  
 #define SHPP_TRIFAN     1  
 #define SHPP_OUTERRING  2  
 #define SHPP_INNERRING  3  
 #define SHPP_FIRSTRING  4  
 #define SHPP_RING       5  
583    
584    PyMODINIT_FUNC initshapelib(void)
585    {
586            PyObject* module = Py_InitModule("shapelib", shapelib_methods);
587            if (!module) return;
588            
589            PYSHAPELIB_ADD_TYPE(PySHPObjectType, "SHPObject");
590            PYSHAPELIB_ADD_TYPE(PyShapeFileType, "ShapeFile");
591            
592            PYSHAPELIB_ADD_CONSTANT(SHPT_NULL);
593            PYSHAPELIB_ADD_CONSTANT(SHPT_POINT);
594            PYSHAPELIB_ADD_CONSTANT(SHPT_ARC);
595            PYSHAPELIB_ADD_CONSTANT(SHPT_POLYGON);
596            PYSHAPELIB_ADD_CONSTANT(SHPT_MULTIPOINT);
597            PYSHAPELIB_ADD_CONSTANT(SHPT_POINTZ);
598            PYSHAPELIB_ADD_CONSTANT(SHPT_ARCZ);
599            PYSHAPELIB_ADD_CONSTANT(SHPT_POLYGONZ);
600            PYSHAPELIB_ADD_CONSTANT(SHPT_MULTIPOINTZ);
601            PYSHAPELIB_ADD_CONSTANT(SHPT_POINTM);
602            PYSHAPELIB_ADD_CONSTANT(SHPT_ARCM);
603            PYSHAPELIB_ADD_CONSTANT(SHPT_POLYGONM);
604            PYSHAPELIB_ADD_CONSTANT(SHPT_MULTIPOINTM);
605            PYSHAPELIB_ADD_CONSTANT(SHPT_MULTIPATCH);
606            PYSHAPELIB_ADD_CONSTANT(SHPP_TRISTRIP);
607            PYSHAPELIB_ADD_CONSTANT(SHPP_TRIFAN);
608            PYSHAPELIB_ADD_CONSTANT(SHPP_OUTERRING);
609            PYSHAPELIB_ADD_CONSTANT(SHPP_INNERRING);
610            PYSHAPELIB_ADD_CONSTANT(SHPP_FIRSTRING);
611            PYSHAPELIB_ADD_CONSTANT(SHPP_RING);
612    }
613    

Legend:
Removed from v.2637  
changed lines
  Added in v.2741

[email protected]
ViewVC Help
Powered by ViewVC 1.1.26