/[winpt]/trunk/Gnupg/rmd160.c
ViewVC logotype

Annotation of /trunk/Gnupg/rmd160.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2 - (hide annotations)
Mon Jan 31 11:02:21 2005 UTC (20 years, 1 month ago) by twoaday
File MIME type: text/plain
File size: 17950 byte(s)
WinPT initial checkin.


1 twoaday 2 /* rmd160.c - RIPE-MD160
2     * Copyright (C) 1998, 2001 Free Software Foundation, Inc.
3     *
4     * This file was taken from Libgcrypt cipher/rmd160.c
5     *
6     * This file is part of GPG.
7     *
8     * This program is free software; you can redistribute it and/or modify
9     * it under the terms of the GNU General Public License as published by
10     * the Free Software Foundation; either version 2 of the License, or
11     * (at your option) any later version.
12     *
13     * This program is distributed in the hope that it will be useful,
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16     * GNU General Public License for more details.
17     *
18     * You should have received a copy of the GNU General Public License
19     * along with this program; if not, write to the Free Software Foundation,
20     * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
21     */
22    
23     #include <string.h>
24    
25     #include "md.h"
26    
27    
28     /*********************************
29     * RIPEMD-160 is not patented, see (as of 25.10.97)
30     * http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html
31     * Note that the code uses Little Endian unsigned charorder, which is good for
32     * 386 etc, but we must add some conversion when used on a big endian box.
33     *
34     *
35     * Pseudo-code for RIPEMD-160
36     *
37     * RIPEMD-160 is an iterative hash function that operates on 32-bit words.
38     * The round function takes as input a 5-word chaining variable and a 16-word
39     * message block and maps this to a new chaining variable. All operations are
40     * defined on 32-bit words. Padding is identical to that of MD4.
41     *
42     *
43     * RIPEMD-160: definitions
44     *
45     *
46     * nonlinear functions at bit level: exor, mux, -, mux, -
47     *
48     * f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15)
49     * f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31)
50     * f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47)
51     * f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63)
52     * f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79)
53     *
54     *
55     * added constants (hexadecimal)
56     *
57     * K(j) = 0x00000000 (0 <= j <= 15)
58     * K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2))
59     * K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3))
60     * K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5))
61     * K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7))
62     * K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2))
63     * K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3))
64     * K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5))
65     * K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7))
66     * K'(j) = 0x00000000 (64 <= j <= 79)
67     *
68     *
69     * selection of message word
70     *
71     * r(j) = j (0 <= j <= 15)
72     * r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
73     * r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
74     * r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
75     * r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
76     * r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
77     * r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
78     * r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
79     * r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
80     * r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
81     *
82     *
83     * amount for rotate left (rol)
84     *
85     * s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8
86     * s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12
87     * s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
88     * s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
89     * s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
90     * s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
91     * s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11
92     * s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
93     * s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
94     * s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
95     *
96     *
97     * initial value (hexadecimal)
98     *
99     * h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476;
100     * h4 = 0xC3D2E1F0;
101     *
102     *
103     * RIPEMD-160: pseudo-code
104     *
105     * It is assumed that the message after padding consists of t 16-word blocks
106     * that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15.
107     * The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left
108     * shift (rotate) over s positions.
109     *
110     *
111     * for i := 0 to t-1 {
112     * A := h0; B := h1; C := h2; D = h3; E = h4;
113     * A' := h0; B' := h1; C' := h2; D' = h3; E' = h4;
114     * for j := 0 to 79 {
115     * T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E;
116     * A := E; E := D; D := rol_10(C); C := B; B := T;
117     * T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)]
118     [+] K'(j)) [+] E';
119     * A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T;
120     * }
121     * T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A';
122     * h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T;
123     * }
124     */
125    
126     /* Some examples:
127     * "" 9c1185a5c5e9fc54612808977ee8f548b2258d31
128     * "a" 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
129     * "abc" 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
130     * "message digest" 5d0689ef49d2fae572b881b123a85ffa21595f36
131     * "a...z" f71c27109c692c1b56bbdceb5b9d2865b3708dbc
132     * "abcdbcde...nopq" 12a053384a9c0c88e405a06c27dcf49ada62eb2b
133     * "A...Za...z0...9" b0e20b6e3116640286ed3a87a5713079b21f5189
134     * 8 times "1234567890" 9b752e45573d4b39f4dbd3323cab82bf63326bfb
135     * 1 million times "a" 52783243c1697bdbe16d37f97f68f08325dc1528
136     */
137    
138     static void
139     burn_stack (int bytes)
140     {
141     char buf[150];
142    
143     memset(buf, 0, sizeof buf);
144     bytes -= sizeof buf;
145     if (bytes > 0)
146     burn_stack (bytes);
147     }
148    
149    
150     void
151     rmd160_init( RMD160_CONTEXT *hd )
152     {
153     hd->h0 = 0x67452301;
154     hd->h1 = 0xEFCDAB89;
155     hd->h2 = 0x98BADCFE;
156     hd->h3 = 0x10325476;
157     hd->h4 = 0xC3D2E1F0;
158     hd->nblocks = 0;
159     hd->count = 0;
160     }
161    
162    
163     /****************
164     * Transform the message X which consists of 16 32-bit-words
165     */
166     static void
167     transform( RMD160_CONTEXT *hd, unsigned char *data )
168     {
169     unsigned long a,b,c,d,e,aa,bb,cc,dd,ee,t;
170     #ifdef BIG_ENDIAN_HOST
171     unsigned long x[16];
172     { int i;
173     unsigned char *p2, *p1;
174     for(i=0, p1=data, p2=(unsigned char*)x; i < 16; i++, p2 += 4 ) {
175     p2[3] = *p1++;
176     p2[2] = *p1++;
177     p2[1] = *p1++;
178     p2[0] = *p1++;
179     }
180     }
181     #else
182     /* this version is better because it is always aligned;
183     * The performance penalty on a 586-100 is about 6% which
184     * is acceptable - because the data is more local it might
185     * also be possible that this is faster on some machines.
186     * This function (when compiled with -02 on gcc 2.7.2)
187     * executes on a 586-100 (39.73 bogomips) at about 1900kb/sec;
188     * [measured with a 4MB data and "gpgm --print-md rmd160"] */
189     unsigned long x[16];
190     memcpy( x, data, 64 );
191     #endif
192    
193    
194     #define K0 0x00000000
195     #define K1 0x5A827999
196     #define K2 0x6ED9EBA1
197     #define K3 0x8F1BBCDC
198     #define K4 0xA953FD4E
199     #define KK0 0x50A28BE6
200     #define KK1 0x5C4DD124
201     #define KK2 0x6D703EF3
202     #define KK3 0x7A6D76E9
203     #define KK4 0x00000000
204     #define F0(x,y,z) ( (x) ^ (y) ^ (z) )
205     #define F1(x,y,z) ( ((x) & (y)) | (~(x) & (z)) )
206     #define F2(x,y,z) ( ((x) | ~(y)) ^ (z) )
207     #define F3(x,y,z) ( ((x) & (z)) | ((y) & ~(z)) )
208     #define F4(x,y,z) ( (x) ^ ((y) | ~(z)) )
209     #define R(a,b,c,d,e,f,k,r,s) do { t = a + f(b,c,d) + k + x[r]; \
210     a = rol(t,s) + e; \
211     c = rol(c,10); \
212     } while(0)
213    
214     /* left lane */
215     a = hd->h0;
216     b = hd->h1;
217     c = hd->h2;
218     d = hd->h3;
219     e = hd->h4;
220     R( a, b, c, d, e, F0, K0, 0, 11 );
221     R( e, a, b, c, d, F0, K0, 1, 14 );
222     R( d, e, a, b, c, F0, K0, 2, 15 );
223     R( c, d, e, a, b, F0, K0, 3, 12 );
224     R( b, c, d, e, a, F0, K0, 4, 5 );
225     R( a, b, c, d, e, F0, K0, 5, 8 );
226     R( e, a, b, c, d, F0, K0, 6, 7 );
227     R( d, e, a, b, c, F0, K0, 7, 9 );
228     R( c, d, e, a, b, F0, K0, 8, 11 );
229     R( b, c, d, e, a, F0, K0, 9, 13 );
230     R( a, b, c, d, e, F0, K0, 10, 14 );
231     R( e, a, b, c, d, F0, K0, 11, 15 );
232     R( d, e, a, b, c, F0, K0, 12, 6 );
233     R( c, d, e, a, b, F0, K0, 13, 7 );
234     R( b, c, d, e, a, F0, K0, 14, 9 );
235     R( a, b, c, d, e, F0, K0, 15, 8 );
236     R( e, a, b, c, d, F1, K1, 7, 7 );
237     R( d, e, a, b, c, F1, K1, 4, 6 );
238     R( c, d, e, a, b, F1, K1, 13, 8 );
239     R( b, c, d, e, a, F1, K1, 1, 13 );
240     R( a, b, c, d, e, F1, K1, 10, 11 );
241     R( e, a, b, c, d, F1, K1, 6, 9 );
242     R( d, e, a, b, c, F1, K1, 15, 7 );
243     R( c, d, e, a, b, F1, K1, 3, 15 );
244     R( b, c, d, e, a, F1, K1, 12, 7 );
245     R( a, b, c, d, e, F1, K1, 0, 12 );
246     R( e, a, b, c, d, F1, K1, 9, 15 );
247     R( d, e, a, b, c, F1, K1, 5, 9 );
248     R( c, d, e, a, b, F1, K1, 2, 11 );
249     R( b, c, d, e, a, F1, K1, 14, 7 );
250     R( a, b, c, d, e, F1, K1, 11, 13 );
251     R( e, a, b, c, d, F1, K1, 8, 12 );
252     R( d, e, a, b, c, F2, K2, 3, 11 );
253     R( c, d, e, a, b, F2, K2, 10, 13 );
254     R( b, c, d, e, a, F2, K2, 14, 6 );
255     R( a, b, c, d, e, F2, K2, 4, 7 );
256     R( e, a, b, c, d, F2, K2, 9, 14 );
257     R( d, e, a, b, c, F2, K2, 15, 9 );
258     R( c, d, e, a, b, F2, K2, 8, 13 );
259     R( b, c, d, e, a, F2, K2, 1, 15 );
260     R( a, b, c, d, e, F2, K2, 2, 14 );
261     R( e, a, b, c, d, F2, K2, 7, 8 );
262     R( d, e, a, b, c, F2, K2, 0, 13 );
263     R( c, d, e, a, b, F2, K2, 6, 6 );
264     R( b, c, d, e, a, F2, K2, 13, 5 );
265     R( a, b, c, d, e, F2, K2, 11, 12 );
266     R( e, a, b, c, d, F2, K2, 5, 7 );
267     R( d, e, a, b, c, F2, K2, 12, 5 );
268     R( c, d, e, a, b, F3, K3, 1, 11 );
269     R( b, c, d, e, a, F3, K3, 9, 12 );
270     R( a, b, c, d, e, F3, K3, 11, 14 );
271     R( e, a, b, c, d, F3, K3, 10, 15 );
272     R( d, e, a, b, c, F3, K3, 0, 14 );
273     R( c, d, e, a, b, F3, K3, 8, 15 );
274     R( b, c, d, e, a, F3, K3, 12, 9 );
275     R( a, b, c, d, e, F3, K3, 4, 8 );
276     R( e, a, b, c, d, F3, K3, 13, 9 );
277     R( d, e, a, b, c, F3, K3, 3, 14 );
278     R( c, d, e, a, b, F3, K3, 7, 5 );
279     R( b, c, d, e, a, F3, K3, 15, 6 );
280     R( a, b, c, d, e, F3, K3, 14, 8 );
281     R( e, a, b, c, d, F3, K3, 5, 6 );
282     R( d, e, a, b, c, F3, K3, 6, 5 );
283     R( c, d, e, a, b, F3, K3, 2, 12 );
284     R( b, c, d, e, a, F4, K4, 4, 9 );
285     R( a, b, c, d, e, F4, K4, 0, 15 );
286     R( e, a, b, c, d, F4, K4, 5, 5 );
287     R( d, e, a, b, c, F4, K4, 9, 11 );
288     R( c, d, e, a, b, F4, K4, 7, 6 );
289     R( b, c, d, e, a, F4, K4, 12, 8 );
290     R( a, b, c, d, e, F4, K4, 2, 13 );
291     R( e, a, b, c, d, F4, K4, 10, 12 );
292     R( d, e, a, b, c, F4, K4, 14, 5 );
293     R( c, d, e, a, b, F4, K4, 1, 12 );
294     R( b, c, d, e, a, F4, K4, 3, 13 );
295     R( a, b, c, d, e, F4, K4, 8, 14 );
296     R( e, a, b, c, d, F4, K4, 11, 11 );
297     R( d, e, a, b, c, F4, K4, 6, 8 );
298     R( c, d, e, a, b, F4, K4, 15, 5 );
299     R( b, c, d, e, a, F4, K4, 13, 6 );
300    
301     aa = a; bb = b; cc = c; dd = d; ee = e;
302    
303     /* right lane */
304     a = hd->h0;
305     b = hd->h1;
306     c = hd->h2;
307     d = hd->h3;
308     e = hd->h4;
309     R( a, b, c, d, e, F4, KK0, 5, 8);
310     R( e, a, b, c, d, F4, KK0, 14, 9);
311     R( d, e, a, b, c, F4, KK0, 7, 9);
312     R( c, d, e, a, b, F4, KK0, 0, 11);
313     R( b, c, d, e, a, F4, KK0, 9, 13);
314     R( a, b, c, d, e, F4, KK0, 2, 15);
315     R( e, a, b, c, d, F4, KK0, 11, 15);
316     R( d, e, a, b, c, F4, KK0, 4, 5);
317     R( c, d, e, a, b, F4, KK0, 13, 7);
318     R( b, c, d, e, a, F4, KK0, 6, 7);
319     R( a, b, c, d, e, F4, KK0, 15, 8);
320     R( e, a, b, c, d, F4, KK0, 8, 11);
321     R( d, e, a, b, c, F4, KK0, 1, 14);
322     R( c, d, e, a, b, F4, KK0, 10, 14);
323     R( b, c, d, e, a, F4, KK0, 3, 12);
324     R( a, b, c, d, e, F4, KK0, 12, 6);
325     R( e, a, b, c, d, F3, KK1, 6, 9);
326     R( d, e, a, b, c, F3, KK1, 11, 13);
327     R( c, d, e, a, b, F3, KK1, 3, 15);
328     R( b, c, d, e, a, F3, KK1, 7, 7);
329     R( a, b, c, d, e, F3, KK1, 0, 12);
330     R( e, a, b, c, d, F3, KK1, 13, 8);
331     R( d, e, a, b, c, F3, KK1, 5, 9);
332     R( c, d, e, a, b, F3, KK1, 10, 11);
333     R( b, c, d, e, a, F3, KK1, 14, 7);
334     R( a, b, c, d, e, F3, KK1, 15, 7);
335     R( e, a, b, c, d, F3, KK1, 8, 12);
336     R( d, e, a, b, c, F3, KK1, 12, 7);
337     R( c, d, e, a, b, F3, KK1, 4, 6);
338     R( b, c, d, e, a, F3, KK1, 9, 15);
339     R( a, b, c, d, e, F3, KK1, 1, 13);
340     R( e, a, b, c, d, F3, KK1, 2, 11);
341     R( d, e, a, b, c, F2, KK2, 15, 9);
342     R( c, d, e, a, b, F2, KK2, 5, 7);
343     R( b, c, d, e, a, F2, KK2, 1, 15);
344     R( a, b, c, d, e, F2, KK2, 3, 11);
345     R( e, a, b, c, d, F2, KK2, 7, 8);
346     R( d, e, a, b, c, F2, KK2, 14, 6);
347     R( c, d, e, a, b, F2, KK2, 6, 6);
348     R( b, c, d, e, a, F2, KK2, 9, 14);
349     R( a, b, c, d, e, F2, KK2, 11, 12);
350     R( e, a, b, c, d, F2, KK2, 8, 13);
351     R( d, e, a, b, c, F2, KK2, 12, 5);
352     R( c, d, e, a, b, F2, KK2, 2, 14);
353     R( b, c, d, e, a, F2, KK2, 10, 13);
354     R( a, b, c, d, e, F2, KK2, 0, 13);
355     R( e, a, b, c, d, F2, KK2, 4, 7);
356     R( d, e, a, b, c, F2, KK2, 13, 5);
357     R( c, d, e, a, b, F1, KK3, 8, 15);
358     R( b, c, d, e, a, F1, KK3, 6, 5);
359     R( a, b, c, d, e, F1, KK3, 4, 8);
360     R( e, a, b, c, d, F1, KK3, 1, 11);
361     R( d, e, a, b, c, F1, KK3, 3, 14);
362     R( c, d, e, a, b, F1, KK3, 11, 14);
363     R( b, c, d, e, a, F1, KK3, 15, 6);
364     R( a, b, c, d, e, F1, KK3, 0, 14);
365     R( e, a, b, c, d, F1, KK3, 5, 6);
366     R( d, e, a, b, c, F1, KK3, 12, 9);
367     R( c, d, e, a, b, F1, KK3, 2, 12);
368     R( b, c, d, e, a, F1, KK3, 13, 9);
369     R( a, b, c, d, e, F1, KK3, 9, 12);
370     R( e, a, b, c, d, F1, KK3, 7, 5);
371     R( d, e, a, b, c, F1, KK3, 10, 15);
372     R( c, d, e, a, b, F1, KK3, 14, 8);
373     R( b, c, d, e, a, F0, KK4, 12, 8);
374     R( a, b, c, d, e, F0, KK4, 15, 5);
375     R( e, a, b, c, d, F0, KK4, 10, 12);
376     R( d, e, a, b, c, F0, KK4, 4, 9);
377     R( c, d, e, a, b, F0, KK4, 1, 12);
378     R( b, c, d, e, a, F0, KK4, 5, 5);
379     R( a, b, c, d, e, F0, KK4, 8, 14);
380     R( e, a, b, c, d, F0, KK4, 7, 6);
381     R( d, e, a, b, c, F0, KK4, 6, 8);
382     R( c, d, e, a, b, F0, KK4, 2, 13);
383     R( b, c, d, e, a, F0, KK4, 13, 6);
384     R( a, b, c, d, e, F0, KK4, 14, 5);
385     R( e, a, b, c, d, F0, KK4, 0, 15);
386     R( d, e, a, b, c, F0, KK4, 3, 13);
387     R( c, d, e, a, b, F0, KK4, 9, 11);
388     R( b, c, d, e, a, F0, KK4, 11, 11);
389    
390    
391     t = hd->h1 + d + cc;
392     hd->h1 = hd->h2 + e + dd;
393     hd->h2 = hd->h3 + a + ee;
394     hd->h3 = hd->h4 + b + aa;
395     hd->h4 = hd->h0 + c + bb;
396     hd->h0 = t;
397     }
398    
399    
400     /* Update the message digest with the contents
401     * of INBUF with length INLEN.
402     */
403     void
404     rmd160_write( RMD160_CONTEXT *hd, unsigned char *inbuf, size_t inlen)
405     {
406     if( hd->count == 64 ) { /* flush the buffer */
407     transform( hd, hd->buf );
408     burn_stack (108+5*sizeof(void*));
409     hd->count = 0;
410     hd->nblocks++;
411     }
412     if( !inbuf )
413     return;
414     if( hd->count ) {
415     for( ; inlen && hd->count < 64; inlen-- )
416     hd->buf[hd->count++] = *inbuf++;
417     rmd160_write( hd, NULL, 0 );
418     if( !inlen )
419     return;
420     }
421    
422     while( inlen >= 64 ) {
423     transform( hd, inbuf );
424     hd->count = 0;
425     hd->nblocks++;
426     inlen -= 64;
427     inbuf += 64;
428     }
429     burn_stack (108+5*sizeof(void*));
430     for( ; inlen && hd->count < 64; inlen-- )
431     hd->buf[hd->count++] = *inbuf++;
432     }
433    
434     /****************
435     * Apply the rmd160 transform function on the buffer which must have
436     * a length 64 unsigned chars. Do not use this function together with the
437     * other functions, use rmd160_init to initialize internal variables.
438     * Returns: 16 unsigned chars in buffer with the mixed contentes of buffer.
439     */
440     void
441     rmd160_mixblock( RMD160_CONTEXT *hd, char *buffer )
442     {
443     char *p = buffer;
444     transform( hd, buffer );
445     #define X(a) do { *(unsigned long*)p = hd->h##a ; p += 4; } while(0)
446     X(0);
447     X(1);
448     X(2);
449     X(3);
450     X(4);
451     #undef X
452     }
453    
454    
455     /* The routine terminates the computation
456     */
457    
458     void
459     rmd160_final( RMD160_CONTEXT *hd )
460     {
461     unsigned long t, msb, lsb;
462     unsigned char *p;
463    
464     rmd160_write(hd, NULL, 0); /* flush */;
465    
466     t = hd->nblocks;
467     /* multiply by 64 to make a unsigned char count */
468     lsb = t << 6;
469     msb = t >> 26;
470     /* add the count */
471     t = lsb;
472     if( (lsb += hd->count) < t )
473     msb++;
474     /* multiply by 8 to make a bit count */
475     t = lsb;
476     lsb <<= 3;
477     msb <<= 3;
478     msb |= t >> 29;
479    
480     if( hd->count < 56 ) { /* enough room */
481     hd->buf[hd->count++] = 0x80; /* pad */
482     while( hd->count < 56 )
483     hd->buf[hd->count++] = 0; /* pad */
484     }
485     else { /* need one extra block */
486     hd->buf[hd->count++] = 0x80; /* pad character */
487     while( hd->count < 64 )
488     hd->buf[hd->count++] = 0;
489     rmd160_write(hd, NULL, 0); /* flush */;
490     memset(hd->buf, 0, 56 ); /* fill next block with zeroes */
491     }
492     /* append the 64 bit count */
493     hd->buf[56] = lsb ;
494     hd->buf[57] = lsb >> 8;
495     hd->buf[58] = lsb >> 16;
496     hd->buf[59] = lsb >> 24;
497     hd->buf[60] = msb ;
498     hd->buf[61] = msb >> 8;
499     hd->buf[62] = msb >> 16;
500     hd->buf[63] = msb >> 24;
501     transform( hd, hd->buf );
502     burn_stack (108+5*sizeof(void*));
503    
504     p = hd->buf;
505     #ifdef BIG_ENDIAN_HOST
506     #define X(a) do { *p++ = hd->h##a ; *p++ = hd->h##a >> 8; \
507     *p++ = hd->h##a >> 16; *p++ = hd->h##a >> 24; } while(0)
508     #else /* little endian */
509     #define X(a) do { *(unsigned long*)p = hd->h##a ; p += 4; } while(0)
510     #endif
511     X(0);
512     X(1);
513     X(2);
514     X(3);
515     X(4);
516     #undef X
517     }
518    
519     unsigned char *
520     rmd160_read( RMD160_CONTEXT *hd )
521     {
522     return hd->buf;
523     }

[email protected]
ViewVC Help
Powered by ViewVC 1.1.26