/[xulu]/branches/1.8-gt2-2.6/src/appl/parallel/spmd/split/SplitMap2D.java
ViewVC logotype

Contents of /branches/1.8-gt2-2.6/src/appl/parallel/spmd/split/SplitMap2D.java

Parent Directory Parent Directory | Revision Log Revision Log


Revision 60 - (show annotations)
Sun Oct 4 16:54:52 2009 UTC (15 years, 3 months ago) by alfonx
File size: 7400 byte(s)
* organized imports
1 package appl.parallel.spmd.split;
2
3 import java.awt.Point;
4 import java.awt.Rectangle;
5 import java.util.Vector;
6
7 import schmitzm.data.WritableGrid;
8 import appl.parallel.util.Helper;
9
10 /**
11 * Responsible for splitting a 2D Area (e.g a {@link WritableGrid}) in a 2D
12 * fashion. The splitting is irregular, meaning that the rectangles are not
13 * equally sized, but partitioned according to the given weights.
14 * Splitting is as follows: <br><br>
15 * 1 to 4 Partitions: 1 row <br>
16 * 4 to 8 Partitions: 2 rows <br>
17 * 9 to 15 Partitions: 3 rows <br>
18 * and so on (depending on the square root of the partititons)<br>
19 * <br>
20 * For partitioning the this class strongly depends on {@link SplitMap1DHorizontal}
21 * and {@link SplitMap1DVertical}. First the squareroot of the number of
22 * participating resources is taken to determine how many rows should be
23 * created. After this the height of the rows is weighted by adding the weight
24 * of the resources in that horizontal partition. The Grid is then splitted
25 * horizontal. Finally the horizontal partitions are splitted vertical according
26 * to the relative weight to each other. This is only a a virtual split (a map
27 * of a split). <br>
28 * A neighborhood range can be specified to create partitions that overlap each
29 * other. This overlapping can be done in two different ways: <br>
30 * <br>
31 * <b>Inboxing</b>(default):<br>
32 * <br>
33 * Inboxing means, that the neighborhood area is not part of the calculation
34 * area. <br>
35 * <br>
36 * <b>Outboxing:</b><br>
37 * Outboxing means that the neighborhood area is part of the calculation area.
38 * <br>
39 * <br>
40 * Note that this may also be applied to three dimensional data structures (a 2D
41 * splitting of a 3D datatype).
42 *
43 * @author Dominik Appl
44 */
45
46 public class SplitMap2D extends AbstractSplitMap implements SplitMap {
47
48 private SplitMap1DHorizontal horizontalMap;
49
50 private SplitMap1DVertical[] verticalMaps;
51
52 public SplitMap2D(int width, int height, int neighborhoodRange,
53 int noOfPartitions, NeighborhoodBoxingMode boxingMode) {
54 super(width, height, neighborhoodRange, noOfPartitions, boxingMode);
55 }
56
57 /**
58 * needed for serialization
59 */
60 public SplitMap2D() {
61 }
62
63 /*
64 * (non-Javadoc)
65 *
66 * @see appl.parallel.spmd.split.AbstractSplitMap#makeMap()
67 */
68 public void makeMap() {
69 // take the squareroot of the number of participating resources to
70 // determine the number of rows:
71 int noOfRows = (int) Math.sqrt(noOfPartitions);
72 // calculate weights for the rows (sum of the weights of the partitions
73 // inside that row)
74 double rowWeights[] = new double[noOfRows];
75 int noOfCols[] = new int[noOfRows]; // noOfCols per row
76 for (int row = 0; row < noOfRows; row++) {
77 // calculate no. of cols in the row:
78 noOfCols[row] = (noOfPartitions / noOfRows);
79 // the last row may contain a greater number of cols
80 if (row == noOfRows - 1)
81 noOfCols[row] = noOfPartitions
82 - ((noOfRows - 1) * noOfCols[row]);
83 for (int col = 0; col < noOfCols[row]; col++)
84 rowWeights[row] += weights[row * col + col];
85 }
86
87 // create the horizontal Splitmap
88 horizontalMap = new SplitMap1DHorizontal(globalWidth, globalHeight,
89 neighborhoodRange, noOfRows, boxingMode);
90 horizontalMap.setWeights(rowWeights);
91 horizontalMap.makeMap();
92
93 // for each horizontal partition create a vertical split
94 verticalMaps = new SplitMap1DVertical[noOfRows];
95 for (int row = 0; row < noOfRows; row++) {
96 //notice: all splitmaps start at (0,0), later a conversion must be made
97 verticalMaps[row] = new SplitMap1DVertical((int) horizontalMap
98 .getGlobalBounds().getWidth(), (int) horizontalMap
99 .getPartitionCalculationBounds(row).getHeight(), neighborhoodRange,
100 noOfCols[row], boxingMode);
101 int ratings[] = new int[noOfCols[row]];
102 for (int col = 0; col < noOfCols[row]; col++) {
103 {
104 // the rating of the col is the weight of the col * 100000
105 // (ratings must be positive integers)
106 ratings[col] = (int) (weights[row * col + col] * 1000000);
107
108 }
109
110 verticalMaps[row].setWeights(Helper.calculateWeights(ratings));
111 verticalMaps[row].makeMap();
112 }
113 }
114 // now we have partitioned the grid. Lets assign the calculation and
115 // neighborhoodareas:
116 for (int i = 0; i < noOfPartitions; i++) {
117 int row = getRowForIdx(i);
118 int col = getColForIdx(i);
119 partitionCalculationBounds[i] = verticalMaps[row]
120 .getPartitionCalculationBounds(col);
121 //because all splitmaps start with (0,0) we must move
122 //the rectangles to the right position
123 int x = (int) partitionCalculationBounds[i].getX(); //the x value remains unchanged
124 partitionCalculationBounds[i].setLocation(
125 new Point(x,(int) horizontalMap.getPartitionCalculationBounds(row).getY()));
126 // if there is only one partition there are no explicit neighborhood
127 // bounds
128 if (noOfPartitions == 1)
129 partitionNeighborhoodBounds[i] = partitionCalculationBounds[i];
130 // else simply extend the Rectangle with the Neighborhoodbounds
131 // created calculation Area (@see AbstractSplitMap)
132 else
133 partitionNeighborhoodBounds[i] = new Rectangle(
134 (int) partitionCalculationBounds[i].getX()
135 - neighborhoodRange,
136 (int) partitionCalculationBounds[i].getY()
137 - neighborhoodRange,
138 (int) (partitionCalculationBounds[i].getWidth() + 2 * neighborhoodRange),
139 (int) (partitionCalculationBounds[i].getHeight() + 2 * neighborhoodRange));
140
141 // cut of the obverlapping sections which are out of the grid:
142 partitionNeighborhoodBounds[i] = partitionNeighborhoodBounds[i]
143 .intersection(globalBounds);
144
145 // the partitionCalculation bounds were created for inboxing:
146 if (boxingMode == NeighborhoodBoxingMode.outBoxing)
147 partitionCalculationBounds[i] = partitionNeighborhoodBounds[i];
148 }
149 }
150
151 /**
152 * @param i
153 * @return
154 */
155 private int getColForIdx(int index) {
156 int noOfRows = (int) Math.sqrt(noOfPartitions);
157 int avgNoOfCols = noOfPartitions / noOfRows;
158 int currentRow = getRowForIdx(index);
159 int returnValue = (index - currentRow*avgNoOfCols);
160 return returnValue;
161 }
162
163 private int getRowForIdx(int index) {
164 int noOfRows = (int) Math.sqrt(noOfPartitions);
165 int avgNoOfCols = noOfPartitions / noOfRows;
166 int returnValue = index / avgNoOfCols;
167 //special handling for the last row (contains more partitions)
168 if(noOfRows==returnValue)
169 return noOfRows-1;
170 else return returnValue;
171 }
172
173 /*
174 * (non-Javadoc)
175 *
176 * @see appl.parallel.spmd.split.SplitMap#getNeighborsForPosition(int)
177 */
178 public int[] getNeighborsForPosition(int pos) {
179 Vector neighbors = new Vector();
180 // simply intersect with all partitions to find the neighbors:
181 for (int i = 0; i < noOfPartitions; i++) {
182 if (i == pos)
183 continue;
184 if (partitionNeighborhoodBounds[i]
185 .intersects(partitionNeighborhoodBounds[pos]))
186 neighbors.add(pos);
187 }
188 int results[] = new int[neighbors.size()];
189 // copy into array
190 for (int i = 0; i < results.length; i++) {
191 results[i] = (Integer) neighbors.get(i);
192 }
193 return results;
194 }
195
196 /*
197 * (non-Javadoc)
198 *
199 * @see appl.parallel.spmd.split.AbstractSplitMap#getDescription()
200 */
201 @Override
202 public String getDescription() {
203 return "2D-irregular Splitmap";
204 }
205
206 }

[email protected]
ViewVC Help
Powered by ViewVC 1.1.26