1 |
package appl.parallel.spmd.split; |
2 |
|
3 |
import java.awt.Point; |
4 |
import java.awt.Rectangle; |
5 |
import java.awt.geom.Rectangle2D; |
6 |
import java.util.Vector; |
7 |
|
8 |
import appl.parallel.client.RemoteExecutionController; |
9 |
import appl.parallel.spmd.split.AbstractSplitMap.NeighborhoodBoxingMode; |
10 |
import appl.parallel.util.Helper; |
11 |
import appl.util.RasterMetaData; |
12 |
import schmitzm.data.WritableGrid; |
13 |
|
14 |
/** |
15 |
* Responsible for splitting a 2D Area (e.g a {@link WritableGrid}) in a 2D |
16 |
* fashion. The splitting is irregular, meaning that the rectangles are not |
17 |
* equally sized, but partitioned according to the given weights. |
18 |
* Splitting is as follows: <br><br> |
19 |
* 1 to 4 Partitions: 1 row <br> |
20 |
* 4 to 8 Partitions: 2 rows <br> |
21 |
* 9 to 15 Partitions: 3 rows <br> |
22 |
* and so on (depending on the square root of the partititons)<br> |
23 |
* <br> |
24 |
* For partitioning the this class strongly depends on {@link SplitMap1DHorizontal} |
25 |
* and {@link SplitMap1DVertical}. First the squareroot of the number of |
26 |
* participating resources is taken to determine how many rows should be |
27 |
* created. After this the height of the rows is weighted by adding the weight |
28 |
* of the resources in that horizontal partition. The Grid is then splitted |
29 |
* horizontal. Finally the horizontal partitions are splitted vertical according |
30 |
* to the relative weight to each other. This is only a a virtual split (a map |
31 |
* of a split). <br> |
32 |
* A neighborhood range can be specified to create partitions that overlap each |
33 |
* other. This overlapping can be done in two different ways: <br> |
34 |
* <br> |
35 |
* <b>Inboxing</b>(default):<br> |
36 |
* <br> |
37 |
* Inboxing means, that the neighborhood area is not part of the calculation |
38 |
* area. <br> |
39 |
* <br> |
40 |
* <b>Outboxing:</b><br> |
41 |
* Outboxing means that the neighborhood area is part of the calculation area. |
42 |
* <br> |
43 |
* <br> |
44 |
* Note that this may also be applied to three dimensional data structures (a 2D |
45 |
* splitting of a 3D datatype). |
46 |
* |
47 |
* @author Dominik Appl |
48 |
*/ |
49 |
|
50 |
public class SplitMap2D extends AbstractSplitMap implements SplitMap { |
51 |
|
52 |
private SplitMap1DHorizontal horizontalMap; |
53 |
|
54 |
private SplitMap1DVertical[] verticalMaps; |
55 |
|
56 |
public SplitMap2D(int width, int height, int neighborhoodRange, |
57 |
int noOfPartitions, NeighborhoodBoxingMode boxingMode) { |
58 |
super(width, height, neighborhoodRange, noOfPartitions, boxingMode); |
59 |
} |
60 |
|
61 |
/** |
62 |
* needed for serialization |
63 |
*/ |
64 |
public SplitMap2D() { |
65 |
} |
66 |
|
67 |
/* |
68 |
* (non-Javadoc) |
69 |
* |
70 |
* @see appl.parallel.spmd.split.AbstractSplitMap#makeMap() |
71 |
*/ |
72 |
public void makeMap() { |
73 |
// take the squareroot of the number of participating resources to |
74 |
// determine the number of rows: |
75 |
int noOfRows = (int) Math.sqrt(noOfPartitions); |
76 |
// calculate weights for the rows (sum of the weights of the partitions |
77 |
// inside that row) |
78 |
double rowWeights[] = new double[noOfRows]; |
79 |
int noOfCols[] = new int[noOfRows]; // noOfCols per row |
80 |
for (int row = 0; row < noOfRows; row++) { |
81 |
// calculate no. of cols in the row: |
82 |
noOfCols[row] = (noOfPartitions / noOfRows); |
83 |
// the last row may contain a greater number of cols |
84 |
if (row == noOfRows - 1) |
85 |
noOfCols[row] = noOfPartitions |
86 |
- ((noOfRows - 1) * noOfCols[row]); |
87 |
for (int col = 0; col < noOfCols[row]; col++) |
88 |
rowWeights[row] += weights[row * col + col]; |
89 |
} |
90 |
|
91 |
// create the horizontal Splitmap |
92 |
horizontalMap = new SplitMap1DHorizontal(globalWidth, globalHeight, |
93 |
neighborhoodRange, noOfRows, boxingMode); |
94 |
horizontalMap.setWeights(rowWeights); |
95 |
horizontalMap.makeMap(); |
96 |
|
97 |
// for each horizontal partition create a vertical split |
98 |
verticalMaps = new SplitMap1DVertical[noOfRows]; |
99 |
for (int row = 0; row < noOfRows; row++) { |
100 |
//notice: all splitmaps start at (0,0), later a conversion must be made |
101 |
verticalMaps[row] = new SplitMap1DVertical((int) horizontalMap |
102 |
.getGlobalBounds().getWidth(), (int) horizontalMap |
103 |
.getPartitionCalculationBounds(row).getHeight(), neighborhoodRange, |
104 |
noOfCols[row], boxingMode); |
105 |
int ratings[] = new int[noOfCols[row]]; |
106 |
for (int col = 0; col < noOfCols[row]; col++) { |
107 |
{ |
108 |
// the rating of the col is the weight of the col * 100000 |
109 |
// (ratings must be positive integers) |
110 |
ratings[col] = (int) (weights[row * col + col] * 1000000); |
111 |
|
112 |
} |
113 |
|
114 |
verticalMaps[row].setWeights(Helper.calculateWeights(ratings)); |
115 |
verticalMaps[row].makeMap(); |
116 |
} |
117 |
} |
118 |
// now we have partitioned the grid. Lets assign the calculation and |
119 |
// neighborhoodareas: |
120 |
for (int i = 0; i < noOfPartitions; i++) { |
121 |
int row = getRowForIdx(i); |
122 |
int col = getColForIdx(i); |
123 |
partitionCalculationBounds[i] = verticalMaps[row] |
124 |
.getPartitionCalculationBounds(col); |
125 |
//because all splitmaps start with (0,0) we must move |
126 |
//the rectangles to the right position |
127 |
int x = (int) partitionCalculationBounds[i].getX(); //the x value remains unchanged |
128 |
partitionCalculationBounds[i].setLocation( |
129 |
new Point(x,(int) horizontalMap.getPartitionCalculationBounds(row).getY())); |
130 |
// if there is only one partition there are no explicit neighborhood |
131 |
// bounds |
132 |
if (noOfPartitions == 1) |
133 |
partitionNeighborhoodBounds[i] = partitionCalculationBounds[i]; |
134 |
// else simply extend the Rectangle with the Neighborhoodbounds |
135 |
// created calculation Area (@see AbstractSplitMap) |
136 |
else |
137 |
partitionNeighborhoodBounds[i] = new Rectangle( |
138 |
(int) partitionCalculationBounds[i].getX() |
139 |
- neighborhoodRange, |
140 |
(int) partitionCalculationBounds[i].getY() |
141 |
- neighborhoodRange, |
142 |
(int) (partitionCalculationBounds[i].getWidth() + 2 * neighborhoodRange), |
143 |
(int) (partitionCalculationBounds[i].getHeight() + 2 * neighborhoodRange)); |
144 |
|
145 |
// cut of the obverlapping sections which are out of the grid: |
146 |
partitionNeighborhoodBounds[i] = partitionNeighborhoodBounds[i] |
147 |
.intersection(globalBounds); |
148 |
|
149 |
// the partitionCalculation bounds were created for inboxing: |
150 |
if (boxingMode == NeighborhoodBoxingMode.outBoxing) |
151 |
partitionCalculationBounds[i] = partitionNeighborhoodBounds[i]; |
152 |
} |
153 |
} |
154 |
|
155 |
/** |
156 |
* @param i |
157 |
* @return |
158 |
*/ |
159 |
private int getColForIdx(int index) { |
160 |
int noOfRows = (int) Math.sqrt(noOfPartitions); |
161 |
int avgNoOfCols = noOfPartitions / noOfRows; |
162 |
int currentRow = getRowForIdx(index); |
163 |
int returnValue = (index - currentRow*avgNoOfCols); |
164 |
return returnValue; |
165 |
} |
166 |
|
167 |
private int getRowForIdx(int index) { |
168 |
int noOfRows = (int) Math.sqrt(noOfPartitions); |
169 |
int avgNoOfCols = noOfPartitions / noOfRows; |
170 |
int returnValue = index / avgNoOfCols; |
171 |
//special handling for the last row (contains more partitions) |
172 |
if(noOfRows==returnValue) |
173 |
return noOfRows-1; |
174 |
else return returnValue; |
175 |
} |
176 |
|
177 |
/* |
178 |
* (non-Javadoc) |
179 |
* |
180 |
* @see appl.parallel.spmd.split.SplitMap#getNeighborsForPosition(int) |
181 |
*/ |
182 |
public int[] getNeighborsForPosition(int pos) { |
183 |
Vector neighbors = new Vector(); |
184 |
// simply intersect with all partitions to find the neighbors: |
185 |
for (int i = 0; i < noOfPartitions; i++) { |
186 |
if (i == pos) |
187 |
continue; |
188 |
if (partitionNeighborhoodBounds[i] |
189 |
.intersects(partitionNeighborhoodBounds[pos])) |
190 |
neighbors.add(pos); |
191 |
} |
192 |
int results[] = new int[neighbors.size()]; |
193 |
// copy into array |
194 |
for (int i = 0; i < results.length; i++) { |
195 |
results[i] = (Integer) neighbors.get(i); |
196 |
} |
197 |
return results; |
198 |
} |
199 |
|
200 |
/* |
201 |
* (non-Javadoc) |
202 |
* |
203 |
* @see appl.parallel.spmd.split.AbstractSplitMap#getDescription() |
204 |
*/ |
205 |
@Override |
206 |
public String getDescription() { |
207 |
return "2D-irregular Splitmap"; |
208 |
} |
209 |
|
210 |
} |